On Control Strategy and Safety Verification of Automated Vehicles

نویسندگان

  • Roozbeh Kianfar
  • Jonas Fredriksson
چکیده

Over the last few decades, congested traffic network have become a serious problem in many countries. Congestions result in time losses, increase of fuel consumption, increase of CO2 emissions and also raise the risk of accidents. While developing the road networks is not a feasible solution in many countries, intelligent transportation systems (ITS) may contribute to mitigate such problems. It is known that human errors or the delay in human’s reactions is the main cause of many of the problem in current transportation systems. Hence, cooperative driving or in particular vehicle platooning is an example of an ITS which exploits advanced technology like, on-board vehicle sensors, wireless communication and control engineering to improve the traffic situation. However, development of such complex system requires a reliable control algorithm which can guarantee passenger safety and comfort while satisfying certain specifications. This thesis deals with the development of a distributed control strategy for a vehicle platoon. The aim of the control strategy is to enable platooning with a short inter-vehicle distance while fulfilling the so called string stability criterion and maintaining the safety and comfort. The control design is divided into longitudinal and lateral control of vehicle. Simulation and experimental results indicate that string stability in longitudinal and lateral direction can be achieved using the proposed control strategy. Furthermore, a safety verification method based on reachability analysis technique and invariant set theory is proposed for safety analysis of such autonomous systems for a given cooperative controller. The safety verification method is extended to account for model uncertainty and measurement noises. The findings in this thesis are verified through simulations and field tests.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Run-Time Risk Mitigation in Automated Vehicles: A Model for Studying Preparatory Steps

We assume that autonomous or highly automated driving (AD) will be accompanied by tough assurance obligations exceeding the requirements of even recent revisions of ISO 26262 or SOTIF. Hence, automotive control and safety engineers have to (i) comprehensively analyze the driving process and its control loop, (ii) identify relevant hazards stemming from this loop, (iii) establish feasible automa...

متن کامل

An adaptive modified fuzzy-sliding mode longitudinal control design and simulation for vehicles equipped with ABS system

In order to improve the safety and longitudinal stability of a vehicle equipped with standard ABS system, this paper, analyzes the basic principles of vehicles stability and proposes a control strategy based on fuzzy adaptive control which will adjust PID gain parameters, using genetic algorithm. A linear three-degree-of-freedom (DOF) vehicle model was set up in Simulink and the stability test ...

متن کامل

Effect of Intelligent Vehicle Networks On Roadways Safety

Most accidents happens because of lack of Visibility and not Driver’s reaction on time whenan accident occurs. Increasing required Time for driver’s reaction caused to decreasingaccidents on roadways .intelligent vehicle networks brings enough time for reaction by sendingalert and alternate messages to vehicles on roadway. Main propose in this paper is aroundmodulation on Reception interval Saf...

متن کامل

Verified Hybrid Controllers for Automated Vehicles - Automatic Control, IEEE Transactions on

The objective of an Automated Highway System (AHS) is to increase the safety and throughput of the existing highway infrastructure by introducing traffic automation. AHS is an example of a large scale, multiagent complex dynamical system and is ideally suited for a hierarchical hybrid controller. We discuss the design of safe and efficient hybrid controllers for regulation of vehicles on an AHS...

متن کامل

Optimizing the Static and Dynamic Scheduling problem of Automated Guided Vehicles in Container Terminals

The Minimum Cost Flow (MCF) problem is a well-known problem in the area of network optimisation. To tackle this problem, Network Simplex Algorithm (NSA) is the fastest solution method. NSA has three extensions, namely Network Simplex plus Algorithm (NSA+), Dynamic Network Simplex Algorithm (DNSA) and Dynamic Network Simplex plus Algorithm (DNSA+). The objectives of the research reported in this...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013