Coherent pattern and timing of the carbon isotope excursion and warming during Eocene Thermal Maximum 2 as recorded in planktic and benthic foraminifera
نویسندگان
چکیده
[1] Eocene Thermal Maximum 2 (ETM2; ∼53.7 Ma) occurred approximately 2 Myr after the Paleocene‐ Eocene Thermal Maximum (∼55.5 Ma) and was characterized by a deep‐sea warming of >3°C, associated with massive release of carbon into the ocean‐atmosphere system. We performed single‐specimen stable isotope analyses of the planktic foraminiferal genera Acarinina (surface dweller) and Subbotina (thermocline dweller) from Ocean Drilling Program Sites 1265, 1267, and 1263 (Walvis Ridge, SE Atlantic Ocean) and compared high‐resolution planktic and benthic stable isotope records to constrain the surface warming and the bathymetric pathway of the carbon isotope excursion during ETM2. Tests of the thermocline dweller Subbotina are absent from sediment deposited during the peak of ETM2. The Acarinina carbon and oxygen isotope records of Sites 1263, 1265, and 1267 are strikingly similar, despite some test recrystallization and large differences in burial depths. Sea surface temperature (SST) estimates based on dO isotope values of Acarinina indicate a SST increase of ∼2°C, significantly less than the >3°C estimated for bottom water warming. The maximum negative carbon isotope excursion for Acarinina was ∼1.7‰, slightly more than in the deep sea (∼1.4‰). The planktic and benthic isotope records do not show time lags, indicating that during ETM2 the isotopically depleted carbon injected into the ocean‐atmosphere system was rapidly mixed within all oceanic carbon reservoirs.
منابع مشابه
Warming the Fuel for the Fire: Evidence for the Thermal Dissociation of Methane Hydrate During the Paleocene-Eocene Thermal Maximum
Dramatic warming and upheaval of the carbon system at the end of the Paleocene Epoch have been linked to massive dissociation of sedimentary methane hydrate. However, testing the Paleocene-Eocene thermal maximum hydrate dissociation hypothesis has been hindered by the inability of available proxy records to resolve the initial sequence of events. The cause of the Paleocene-Eocene thermal maximu...
متن کاملA continental shelf perspective of ocean acidification and temperature evolution during the Paleocene-Eocene Thermal Maximum
A rapid and large injection of isotopically light carbon into the ocean-atmosphere reservoirs is signaled by a negative carbon isotope excursion (CIE) at the Paleocene-Eocene boundary ~56 m.y. ago. To better understand the extent of ocean warming and acidification associated with the carbon injection we generated elemental and isotopic records of surface and thermocline planktonic foraminifera ...
متن کاملThe Impact of the Latest Danian Event on Planktic Foraminiferal Faunas at ODP Site 1210 (Shatsky Rise, Pacific Ocean)
The marine ecosystem has been severely disturbed by several transient paleoenvironmental events (<200 kyr duration) during the early Paleogene, of which the Paleocene-Eocene Thermal Maximum (PETM, ~56 Ma) was the most prominent. Over the last decade a number of similar events of Paleocene and Eocene age have been discovered. However, relatively little attention has been paid to pre-PETM events,...
متن کاملHigh-resolution deep-sea carbon and oxygen isotope records of Eocene Thermal Maximum 2 and H2
Eocene Thermal Maximum 2 (ETM2) and H2 were two short-lived global warming events that occurred ~2 m.y. after the Paleocene–Eocene thermal maximum (PETM, ca. 56 Ma). We have generated benthic foraminiferal stable carbon and oxygen isotope records of four sites along a depth transect on Walvis Ridge (~3.5–1.5 km paleodepth, southeast Atlantic Ocean) and one site on Maud Rise (Weddell Sea) to con...
متن کاملThermal Maximum 2 and H2 High-resolution deep-sea carbon and oxygen isotope records of Eocene
Eocene Thermal Maximum 2 (ETM2) and H2 were two short-lived global warming events that occurred ~2 m.y. after the Paleocene–Eocene thermal maximum (PETM, ca. 56 Ma). We have generated benthic foraminiferal stable carbon and oxygen isotope records of four sites along a depth transect on Walvis Ridge (~3.5–1.5 km paleodepth, southeast Atlantic Ocean) and one site on Maud Rise (Weddell Sea) to con...
متن کامل