New drug target in protozoan parasites: the role of thioredoxin reductase
نویسندگان
چکیده
Amebiasis causes approximately 70,000 deaths annually and is the third cause of death due to parasites worldwide. It is treated primarily with metronidazole, which has adverse side effects, is mutagenic and carcinogenic, and emergence of resistance is an increasing concern. Unfortunately, better therapeutic alternatives are lacking. Re-purposing of older FDA approved drugs is advantageous to drug discovery since safety and pharmacokinetic effects in humans are already known. In high throughput screening studies, we recently demonstrated that auranofin, a gold containing compound originally approved to treat rheumatoid arthritis, has activity against trophozoites of E. histolytica, the causative agent of amebiasis. Auranofin's anti-parasitic activity is attributed to its monovalent gold molecule that readily inhibits E. histolytica thioredoxin reductase. This anti-oxidant enzyme is the only thiol-dependent flavo-reductase present in E. histolytica. Auranofin has also shown promising activity against other protozoans of significant public health importance. Altogether, this evidence suggests that auranofin has the potential to become a broad spectrum alternative therapeutic agent for diseases with a large global burden.
منابع مشابه
Plasmodium falciparum Thioredoxin Reductase (PfTrxR) and Its Role as a Target for New Antimalarial Discovery.
The growing resistance to current antimalarial drugs is a major concern for global public health. The pressing need for new antimalarials has led to an increase in research focused on the Plasmodium parasites that cause human malaria. Thioredoxin reductase (TrxR), an enzyme needed to maintain redox equilibrium in Plasmodium species, is a promising target for new antimalarials. This review paper...
متن کاملThiol-based redox metabolism of protozoan parasites.
The review considers redox enzymes of Plasmodium spp., Trypanosomatida, Trichomonas, Entamoeba and Giardia, with special emphasis on their potential use as targets for drug development. Thiol-based redox systems play pivotal roles in the success and survival of these parasitic protozoa. The synthesis of cysteine, the key molecule of any thiol metabolism, has been elucidated in trypanosomatids a...
متن کاملReplacement of threonine-55 with glycine decreases the reduction rate of OsTrx20 by glutathione
Thioredoxins (Trxs) are small ubiquitous oxidoreductase proteins with two redox-active Cys residues in a conserved active site (WCG/PPC) that regulate numerous target proteins via thiol/disulfide exchanges in the cells of prokaryotes and eukaryotes. The isoforms OsTrx23 with a typical active site (WCGPC) and OsTrx20 with an atypical active site (WCTPC) are two Trx h- type isoforms in rice that ...
متن کاملStructural model of the Plasmodium falciparum thioredoxin reductase:a novel target for antimalarial drugs.
BACKGROUND Malaria, a scourge of mankind, imposes a huge socioeconomic burden in tropical countries. Emergence of multi-drug resistant malarial parasites impels us to explore novel drug targets. Thioredoxin reductase is a promising antimalarial drug target. METHODS The Thioredoxin reductase enzyme of Plasmodium falciparum was characterized in silico and protein disorder was predicted using av...
متن کاملIdentification of Thioredoxin Glutathione Reductase Inhibitors That Kill Cestode and Trematode Parasites
Parasitic flatworms are responsible for serious infectious diseases that affect humans as well as livestock animals in vast regions of the world. Yet, the drug armamentarium available for treatment of these infections is limited: praziquantel is the single drug currently available for 200 million people infected with Schistosoma spp. and there is justified concern about emergence of drug resist...
متن کامل