A Multilevel Algorithm for Large Unconstrained Binary Quadratic Optimization
نویسندگان
چکیده
The unconstrained binary quadratic programming (UBQP) problem is a general NP-hard problem with various applications. In this paper, we present a multilevel algorithm designed to approximate large UBQP instances. The proposed multilevel algorithm is composed of a backbone-based coarsening phase, an asymmetric uncoarsening phase and a memetic refinement phase, where the backbone-based procedure and the memetic refinement procedure make use of tabu search to obtain improved solutions. Evaluated on a set of 11 largest instances from the literature (with 5000 to 7000 variables), the proposed algorithm proves to be able to attain all the best known values with a computing effort less than any existing approach.
منابع مشابه
A limited memory adaptive trust-region approach for large-scale unconstrained optimization
This study concerns with a trust-region-based method for solving unconstrained optimization problems. The approach takes the advantages of the compact limited memory BFGS updating formula together with an appropriate adaptive radius strategy. In our approach, the adaptive technique leads us to decrease the number of subproblems solving, while utilizing the structure of limited memory quasi-Newt...
متن کاملA hybrid metaheuristic for multiobjective unconstrained binary quadratic programming
The conventional Unconstrained Binary Quadratic Programming (UBQP) problem is known to be a unified modeling and solution framework for many combinatorial optimization problems. This paper extends the single-objective UBQP to the multiobjective case (mUBQP) where multiple objectives are to be optimized simultaneously. We propose a hybrid metaheuristic which combines an elitist evolutionary mult...
متن کاملA Diversified Multi-Start Algorithm for Unconstrained Binary Quadratic Problems Leveraging the Graphics Processor Unit
Multi-start algorithms are a common and effective tool for metaheuristic searches. In this paper we amplify multi-start capabilities by employing the parallel processing power of the graphics processer unit (GPU) to quickly generate a diverse starting set of solutions for the Unconstrained Binary Quadratic Optimization Problem which are evaluated and used to implement screening methods to selec...
متن کاملLogical and Inequality Implications for Reducing the Size and Complexity of Quadratic Unconstrained Binary Optimization Problems
The quadratic unconstrained binary optimization (QUBO) problem arises in diverse optimization applications ranging from Ising spin problems to classical problems in graph theory and binary discrete optimization. The use of preprocessing to transform the graph representing the QUBO problem into a smaller equivalent graph is important for improving solution quality and time for both exact and met...
متن کاملA Penalized Quadratic Convex Reformulation Method for Random Quadratic Unconstrained Binary Optimization
The Quadratic Convex Reformulation (QCR) method is used to solve quadratic unconstrained binary optimization problems. In this method, the semidefinite relaxation is used to reformulate it to a convex binary quadratic program which is solved using mixed integer quadratic programming solvers. We extend this method to random quadratic unconstrained binary optimization problems. We develop a Penal...
متن کامل