Fiedler Companion Linearizations and the Recovery of Minimal Indices

نویسندگان

  • Fernando de Terán
  • Froilán M. Dopico
  • D. Steven Mackey
چکیده

A standard way of dealing with a matrix polynomial P (λ) is to convert it into an equivalent matrix pencil – a process known as linearization. For any regular matrix polynomial, a new family of linearizations generalizing the classical first and second Frobenius companion forms has recently been introduced by Antoniou and Vologiannidis, extending some linearizations previously defined by Fiedler for scalar polynomials. We prove that these pencils are linearizations even when P (λ) is a singular square matrix polynomial, and show explicitly how to recover the left and right minimal indices and minimal bases of the polynomial P (λ) from the minimal indices and bases of these linearizations. In addition, we provide a simple way to recover the eigenvectors of a regular polynomial from those of any of these linearizations, without any computational cost. The existence of an eigenvector recovery procedure is essential for a linearization to be relevant for applications.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Recovery of Eigenvectors and Minimal Bases of Matrix Polynomials from Generalized Fiedler Linearizations

A standard way to solve polynomial eigenvalue problems P (λ)x = 0 is to convert the matrix polynomial P (λ) into a matrix pencil that preserves its elementary divisors and, therefore, its eigenvalues. This process is known as linearization and is not unique, since there are infinitely many linearizations with widely varying properties associated with P (λ). This freedom has motivated the recent...

متن کامل

Fiedler-comrade and Fiedler-Chebyshev pencils

Fiedler pencils are a family of strong linearizations for polynomials expressed in the monomial basis, that include the classical Frobenius companion pencils as special cases. We generalize the definition of a Fiedler pencil from monomials to a larger class of orthogonal polynomial bases. In particular, we derive Fiedler-comrade pencils for two bases that are extremely important in practical ap...

متن کامل

Palindromic linearizations of a matrix polynomial of odd degreee obtained from Fiedler pencils with repetition

Many applications give rise to structured, in particular T-palindromic, matrix polynomials. In order to solve a polynomial eigenvalue problem P (λ)x = 0, where P (λ) is a T-palindromic matrix polynomial, it is convenient to use palindromic linearizations to ensure that the symmetries in the eigenvalues, elementary divisors, and minimal indices of P (λ) due to the palindromicity are preserved. I...

متن کامل

Palindromic Linearizations of a Matrix Polynomial of Odd Degree Obtained from Fiedler Pencils with Repetition

Many applications give rise to structured, in particular T-palindromic, matrix polynomials. In order to solve a polynomial eigenvalue problem P (λ)x = 0, where P (λ) is a T-palindromic matrix polynomial, it is convenient to use palindromic linearizations to ensure that the symmetries in the eigenvalues, elementary divisors, and minimal indices of P (λ) due to the palindromicity are preserved. I...

متن کامل

Ela Palindromic Linearizations of a Matrix Polynomial of Odd Degree Obtained from Fiedler Pencils with Repetition

Many applications give rise to structured, in particular T-palindromic, matrix polynomials. In order to solve a polynomial eigenvalue problem P (λ)x = 0, where P (λ) is a T-palindromic matrix polynomial, it is convenient to use palindromic linearizations to ensure that the symmetries in the eigenvalues, elementary divisors, and minimal indices of P (λ) due to the palindromicity are preserved. I...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Matrix Analysis Applications

دوره 31  شماره 

صفحات  -

تاریخ انتشار 2010