Crowdtuning: systematizing auto-tuning using predictive modeling and crowdsourcing
نویسندگان
چکیده
Software and hardware co-design and optimization of HPC systems has become intolerably complex, ad-hoc, time consuming and error prone due to enormous number of available design and optimization choices, complex interactions between all software and hardware components, and multiple strict requirements placed on performance, power consumption, size, reliability and cost. We present our novel long-term holistic and practical solution to this problem based on customizable, plugin-based, schema-free, heterogeneous, open-source Collective Mind repository and infrastructure with unified web interfaces and online advise system. This collaborative framework distributes analysis and multiobjective off-line and on-line auto-tuning of computer systems among many participants while utilizing any available smart phone, tablet, laptop, cluster or data center, and continuously observing, classifying and modeling their realistic behavior. Any unexpected behavior is analyzed using shared data mining and predictive modeling plugins or exposed to the community at cTuning.org for collaborative explanation, top-down complexity reduction, incremental problem decomposition and detection of correlating program, architecture or run-time properties (features). Gradually increasing optimization knowledge helps to continuously improve optimization heuristics of any compiler, predict optimizations for new programs or suggest efficient run-time (online) tuning and adaptation strategies depending on end-user requirements. We decided to share all our past research artifacts including hundreds of codelets, numerical applications, data sets, models, universal experimental analysis and auto-tuning pipelines, self-tuning machine learning based meta compiler, and unified statistical analysis and machine learning plugins in a public repository to initiate systematic, reproducible and collaborative R&D with a new publication model where experiments and techniques are validated, ranked and improved by the community.
منابع مشابه
Collective Mind: cleaning up the research and experimentation mess in computer engineering using crowdsourcing, big data and machine learning
Software and hardware co-design and optimization of HPC systems has become intolerably complex, ad-hoc, time consuming and error prone due to enormous number of available design and optimization choices, complex interactions between all software and hardware components, and multiple strict requirements placed on performance, power consumption, size, reliability and cost. We present our novel lo...
متن کاملAdaptive Tuning of Model Predictive Control Parameters based on Analytical Results
In dealing with model predictive controllers (MPC), controller tuning is a key design step. Various tuning methods are proposed in the literature which can be categorized as heuristic, numerical and analytical methods. Among the available tuning methods, analytical approaches are more interesting and useful. This paper is based on a proposed analytical MPC tuning approach for plants can be appr...
متن کاملA Novel LSSVM Based Algorithm to Increase Accuracy of Bacterial Growth Modeling
Background: The recent progress and achievements in the advanced, accurate, and rigorously evaluated algorithms has revolutionized different aspects of the predictive microbiology including bacterial growth.Objectives: In this study, attempts were made to develop a more accurate hybrid algorithm for predicting the bacterial growth curve which can also be ...
متن کاملOffline Auto-Tuning of a PID Controller Using Extended Classifier System (XCS) Algorithm
Proportional + Integral + Derivative (PID) controllers are widely used in engineering applications such that more than half of the industrial controllers are PID controllers. There are many methods for tuning the PID parameters in the literature. In this paper an intelligent technique based on eXtended Classifier System (XCS) is presented to tune the PID controller parameters. The PID controlle...
متن کاملA model-free approach for auto-tuning of model predictive control
A two-layer approach for the auto-tuning of model predictive control (MPC) is proposed. The bottom layer computes the weighting matrices of the cost function from a desired closed-loop bandwidth while the top layer aims at finding the optimal bandwidth. This optimum corresponds to the optimal balance between the robustness and nominal performance of the closed-loop system. To find the optimal b...
متن کامل