On Brauer-Kuroda type relations of S-class numbers in dihedral extensions

نویسنده

  • Alex Bartel
چکیده

Let F/k be a Galois extension of number fields with dihedral Galois group of order 2q, where q is an odd integer. We express a certain quotient of S -class numbers of intermediate fields, arising from Brauer-Kuroda relations, as a unit index. Our formula is valid for arbitrary extensions with Galois group D2q and for arbitrary Galois-stable sets of primes S , containing the Archimedean ones. Our results have curious applications to determining the Galois module structure of the units modulo the roots of unity of a D2q-extension from class numbers and S -class numbers. The techniques we use are mainly representation theoretic and we consider the representation theoretic results we obtain to be of independent interest.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Class Number Relations from a Computational Point of View

Brauer and Kuroda showed in the fifties how in a Galois extension of number fields, relations between permutation characters of subgroups provide relations between invariants, such as the discriminant, class number and regulator, of the corresponding intermediate fields. In this paper we investigate various computational aspects of these relations, we present examples, and we give a method to a...

متن کامل

Kuroda’s Class Number Formula

Let k be a number field and K/k a V4-extension, i.e., a normal extension with Gal(K/k) = V4, where V4 is Klein’s four-group. K/k has three intermediate fields, say k1, k2, and k3. We will use the symbol N i (resp. Ni) to denote the norm of K/ki (resp. ki/k), and by a widespread abuse of notation we will apply N i and Ni not only to numbers, but also to ideals and ideal classes. The unit groups ...

متن کامل

Brauer Groups of Genus Zero Extensions of Number Fields

We determine the isomorphism class of the Brauer groups of certain nonrational genus zero extensions of number fields. In particular, for all genus zero extensions E of the rational numbers Q that are split by Q( √ 2), Br(E) ∼= Br(Q(t)).

متن کامل

Dihedral and cyclic extensions with large class numbers

This paper is a continuation of [2]. We construct unconditionally several families of number fields with large class numbers. They are number fields whose Galois closures have as the Galois groups, dihedral groups Dn, n = 3, 4, 5, and cyclic groups Cn, n = 4, 5, 6. We first construct families of number fields with small regulators, and by using the strong Artin conjecture and applying some modi...

متن کامل

Galois-azumaya Extensions and the Brauer-galois Group of a Commutative Ring

Introduction. Galois extensions of noncommutative rings were introduced in 1964 by Teruo Kanzaki [13]. These algebraic objects generalize to noncommutative rings the classical Galois extensions of fields and the Galois extensions of commutative rings due to Auslander and Goldman [1]. At the same time they also turn out to be fundamental examples of Hopf-Galois extensions; these were first consi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009