Conjecture on the interlacing of zeros in complex Sturm–Liouville problems

نویسندگان

  • Carl M. Bender
  • Stefan Boettcher
  • Van M. Savage
چکیده

The zeros of the eigenfunctions of self-adjoint Sturm–Liouville eigenvalue problems interlace. For these problems interlacing is crucial for completeness. For the complex Sturm–Liouville problem associated with the Schrödinger equation for a non-Hermitian PT-symmetric Hamiltonian, completeness and interlacing of zeros have never been examined. This paper reports a numerical study of the Sturm– Liouville problems for three complex potentials, the large-N limit of a 2(ix) potential, a quasiexactly-solvable 2x potential, and an ix potential. In all cases the complex zeros of the eigenfunctions exhibit a similar pattern of interlacing and it is conjectured that this pattern is universal. Understanding this pattern could provide insight into whether the eigenfunctions of complex Sturm–Liouville problems form a complete set. © 2000 American Institute of Physics. @S0022-2488~00!04309-7#

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

New classes of Lyapunov type inequalities of fractional $Delta$-difference Sturm-Liouville problems with applications

‎In this paper‎, ‎we consider a new study about fractional $Delta$-difference equations‎. ‎We consider two special classes of Sturm-Liouville problems equipped with fractional $Delta$-difference operators‎. ‎In couple of steps‎, ‎the Lyapunov type inequalities for both classes will be obtained‎. ‎As application‎, ‎some qualitative behaviour of mentioned fractional problems such as stability‎, ‎...

متن کامل

On the determination of asymptotic formula of the nodal points for the Sturm-Liouville equation with one turning point

In this paper, the asymptotic representation of the corresponding eigenfunctions of the eigenvalues has been investigated. Furthermore, we obtain the zeros of eigenfunctions.

متن کامل

Contents 1 The Basic Theory

Sturm-Liouville Theory Christopher J. Adkins Master of Science Graduate Department of Mathematics University of Toronto 2014 A basic introduction into Sturm-Liouville Theory. We mostly deal with the general 2ndorder ODE in self-adjoint form. There are a number of things covered including: basic asymptotics, properties of the spectrum, interlacing of zeros, transformation arguments...

متن کامل

Solving Inverse Sturm-Liouville Problems with Transmission Conditions on Two Disjoint Intervals

‎In the present paper‎, ‎some spectral properties of boundary value problems of Sturm-Liouville type on two disjoint bounded intervals with transmission boundary conditions are investigated‎. ‎Uniqueness theorems for the solution of the inverse problem are proved‎, ‎then we study the reconstructing of the coefficients of the Sturm-Liouville problem by the spectrtal mappings method.

متن کامل

Infinite product representation of solution of indefinite SturmLiouville problem

In this paper, we investigate infinite product representation of the solution of a Sturm- Liouville equation with an indefinite weight function which has two zeros and/or singularities in a finite interval. First, by using of the asymptotic estimates provided in [W. Eberhard, G. Freiling, K. Wilcken-Stoeber, Indefinite eigenvalue problems with several singular points and turning points, Math. N...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000