WKB analysis of higher order

نویسندگان

  • Yoshitsugu TAKEI
  • Mikio SATO
  • Takahiro Kawai
  • Yoshitsugu Takei
چکیده

WKB analysis of higher order Painlevé equations with a large parameter. II. — Structure theorem for instanton-type solutions of (P J) m (J = I, 34, II-2 or IV) near a simple P-turning point of the first kind

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dedicated to Professor Daisuke Fujiwara on His Seventieth Birthday

Higher order simple-pole type operators, that is, higher order linear ordinary differential operators with a large parameter η whose coefficients have simple poles at the origin, are discussed from the viewpoint of the exact WKB analysis. Making use of the technique of microdifferential operators, we clarify the singularity structure of the Borel transform of their WKB solutions.

متن کامل

Path integral derivations of novel complex trajectory methods

Path integral derivations are presented for two recently developed complex trajectory techniques for the propagation of wave packets, Complex WKB and BOMCA. Complex WKB is derived using a standard saddle point approximation of the path integral, but taking into account the h̄ dependence of both the amplitude and the phase of the intial wave function, thus giving rise to the need for complex clas...

متن کامل

Virtual turning points and bifurcation of Stokes curves for higher order ordinary differential equations

For a higher order linear ordinary differential operator P , its Stokes curve bifurcates in general when it hits another turning point of P . This phenomenon is most neatly understandable by taking into account Stokes curves emanating from virtual turning points, together with those from ordinary turning points. This understanding of the bifurcation of a Stokes curve plays an important role in ...

متن کامل

On WKB analysis of higher order Painlevé equations with a large parameter

We announce a generalization of the reduction theorem for 0parameter solutions of the traditional (i.e., second order) Painlevé equations with a large parameter to those of some higher order Painlevé equations, i.e., each member of the Painleve hierarchies (PJ) (J =I, II-1 and II-2) discussed in [KKNT]. Thus the scope of applicability of the reduction theorem ([KT1], [KT2]) has been substantial...

متن کامل

On the Stokes geometry of higher order Painlevé equations

We show several basic properties concerning the relation between the Stokes geometry (i.e., configuration of Stokes curves and turning points) of a higher order Painlevé equation with a large parameter and the Stokes geometry of (one of) the underlying Lax pair. The higherorder Painlevé equation with a large parameter to be considered in this paper is one of the members of PJ -hierarchy with J ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009