Leakage-Resilient Signatures
نویسندگان
چکیده
The strongest standard security notion for digital signature schemes is unforgeability under chosen message attacks. In practice, however, this notion can be insufficient due to “side-channel attacks” which exploit leakage of information about the secret internal state. In this work we put forward the notion of “leakage-resilient signatures,” which strengthens the standard security notion by giving the adversary the additional power to learn a bounded amount of arbitrary information about the secret state that was accessed during every signature generation. This notion naturally implies security against all side-channel attacks as long as the amount of information leaked on each invocation is bounded and “only computation leaks information.” The main result of this paper is a construction which gives a (tree-based, stateful) leakage-resilient signature scheme based on any 3-time signature scheme. The amount of information that our scheme can safely leak per signature generation is 1/3 of the information the underlying 3-time signature scheme can leak in total. Signature schemes that remain secure even if a bounded total amount of information is leaked were recently constructed, hence instantiating our construction with these schemes gives the first constructions of provably secure leakage-resilient signature schemes. The above construction assumes that the signing algorithm can sample truly random bits, and thus an implementation would need some special hardware (randomness gates). Simply generating this randomness using a leakage-resilient stream-cipher will in general not work. Our second contribution is a sound general principle to replace uniform random bits in any leakage-resilient construction with pseudorandom ones: run two leakage-resilient stream-ciphers (with independent keys) in parallel and then apply a two-source extractor to their outputs.
منابع مشابه
Leakage-Resilient Signatures with Graceful Degradation
We investigate new models and constructions which allow leakage-resilient signatures secure against existential forgeries, where the signature is much shorter than the leakage bound. Current models of leakage-resilient signatures against existential forgeries demand that the adversary cannot produce a new valid message/signature pair (m,σ) even after receiving some λ bits of leakage on the sign...
متن کاملEncryption Schemes with Post-Challenge Auxiliary Inputs
In this paper, we tackle the open problem of proposing a leakage-resilience encryption model that can capture leakage from both the secret key owner and the encryptor, in the auxiliary input model. Existing models usually do not allow adversaries to query more leakage information after seeing the challenge ciphertext of the security games. On one hand, side-channel attacks on the random factor ...
متن کاملSignatures Resilient to Continual Leakage on Memory and Computation
Recent breakthrough results by Brakerski et al and Dodis et al have shown that signature schemes can be made secure even if the adversary continually obtains information leakage from the secret key of the scheme. However, the schemes currently do not allow leakage on the secret key and randomness during signing, except in the random oracle model. Further, the random oracle based schemes require...
متن کاملNew Approach to Practical Leakage-Resilient Public-Key Cryptography
We present a new approach to construct several leakage-resilient cryptographic primitives, including leakage-resilient public-key encryption (PKE) schemes, authenticated key exchange (AKE) protocols and low-latency key exchange (LLKE) protocols. To this end, we introduce a new primitive called leakage-resilient non-interactive key exchange (LR-NIKE) protocol. We introduce a generic security mod...
متن کاملLeakage-Resilient Zero Knowledge
In this paper, we initiate a study of zero knowledge proof systems in the presence of side-channel attacks. Specifically, we consider a setting where a cheating verifier is allowed to obtain arbitrary bounded leakage on the entire state (including the witness and the random coins) of the prover during the entire protocol execution. We formalize a meaningful definition of leakage-resilient zero ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IACR Cryptology ePrint Archive
دوره 2009 شماره
صفحات -
تاریخ انتشار 2009