Spectral Projected Gradient Method on Convex Sets 227 3 . New Algorithm
نویسندگان
چکیده
The spectral gradient method has proved to be effective for solving large-scale unconstrained optimization problems. It has been recently extended and combined with the projected gradient method for solving optimization problems on convex sets. This combination includes the use of nonmonotone line search techniques to preserve the fast local convergence. In this work we further extend the spectral choice of steplength to accept preconditioned directions when a good preconditioner is available. We present an algorithm that combines the spectral projected gradient method with preconditioning strategies to increase the local speed of convergence while keeping the global properties. We discuss implementation details for solving large-scale problems. Mathematics subject classification: 49M, 90C, 65K.
منابع مشابه
Inexact Spectral Projected Gradient Methods on Convex Sets
A new method is introduced for large scale convex constrained optimization. The general model algorithm involves, at each iteration, the approximate minimization of a convex quadratic on the feasible set of the original problem and global convergence is obtained by means of nonmonotone line searches. A specific algorithm, the Inexact Spectral Projected Gradient method (ISPG), is implemented usi...
متن کاملNonmonotone Spectral Projected Gradient Methods on Convex Sets
Nonmonotone projected gradient techniques are considered for the minimization of differentiable functions on closed convex sets. The classical projected gradient schemes are extended to include a nonmonotone steplength strategy that is based on the Grippo-Lampariello-Lucidi nonmonotone line search. In particular, the nonmonotone strategy is combined with the spectral gradient choice of stepleng...
متن کاملSpectral projected gradient method for stochastic optimization
We consider the Spectral Projected Gradient method for solving constrained optimization porblems with the objective function in the form of mathematical expectation. It is assumed that the feasible set is convex, closed and easy to project on. The objective function is approximated by a sequence of Sample Average Approximation functions with different sample sizes. The sample size update is bas...
متن کاملConvergence Rate of an Optimization Algorithm for Minimizing Quadratic Functions with Separable Convex Constraints
A new active set algorithm for minimizing quadratic functions with separable convex constraints is proposed by combining the conjugate gradient method with the projected gradient. It generalizes recently developed algorithms of quadratic programming constrained by simple bounds. A linear convergence rate in terms of the Hessian spectral condition number is proven. Numerical experiments, includi...
متن کاملSIZE AND GEOMETRY OPTIMIZATION OF TRUSS STRUCTURES USING THE COMBINATION OF DNA COMPUTING ALGORITHM AND GENERALIZED CONVEX APPROXIMATION METHOD
In recent years, the optimization of truss structures has been considered due to their several applications and their simple structure and rapid analysis. DNA computing algorithm is a non-gradient-based method derived from numerical modeling of DNA-based computing performance by new computers with DNA memory known as molecular computers. DNA computing algorithm works based on collective intelli...
متن کامل