Structural strength of cancellous specimens from bovine femur under cyclic compression

نویسندگان

  • Kaori Endo
  • Satoshi Yamada
  • Masahiro Todoh
  • Masahiko Takahata
  • Norimasa Iwasaki
  • Shigeru Tadano
  • Arti Ahluwalia
چکیده

The incidence of osteoporotic fractures was estimated as nine million worldwide in 2000, with particular occurrence at the proximity of joints rich in cancellous bone. Although most of these fractures spontaneously heal, some fractures progressively collapse during the early post-fracture period. Prediction of bone fragility during progressive collapse following initial fracture is clinically important. However, the mechanism of collapse, especially the gradual loss of the height in the cancellous bone region, is not clearly proved. The strength of cancellous bone after yield stress is difficult to predict since structural and mechanical strength cannot be determined a priori. The purpose of this study was to identify whether the baseline structure and volume of cancellous bone contributed to the change in cancellous bone strength under cyclic loading. A total of fifteen cubic cancellous bone specimens were obtained from two 2-year-old bovines and divided into three groups by collection regions: femoral head, neck, and proximal metaphysis. Structural indices of each 5-mm cubic specimen were determined using micro-computed tomography. Specimens were then subjected to five cycles of uniaxial compressive loading at 0.05 mm/min with initial 20 N loading, 0.3 mm displacement, and then unloading to 0.2 mm with 0.1 mm displacement for five successive cycles. Elastic modulus and yield stress of cancellous bone decreased exponentially during five loading cycles. The decrease ratio of yield stress from baseline to fifth cycle was strongly correlated with bone volume fraction (BV/TV, r = 0.96, p < 0.01) and structural model index (SMI, r = - 0.81, p < 0.01). The decrease ratio of elastic modulus from baseline to fifth cycle was also correlated with BV/TV (r = 0.80, p < 0.01) and SMI (r = - 0.78, p < 0.01). These data indicate that structural deterioration of cancellous bone is associated with bone strength after yield stress. This study suggests that baseline cancellous bone structure estimated from adjacent non-fractured bone contributes to the cancellous bone strength during collapse.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Irradiation Does Not Modify Femoral Cancellous Bone Strength or Microdamage Processes

INTRODUCTION Structurally intact cancellous bone allograft is an attractive tissue form in that it may be filled with osteoinductive agents while providing immediate structural support. Bone allograft tissue is commonly submitted to gamma radiation sterilization of 25-35 kGy to prevent disease transmission from donor to host. In cortical bone, gamma radiation sterilization has been shown to cau...

متن کامل

Evaluation on mechanical properties of a single trabecular in bovine femur

The increase of patients with osteoporosis is a social problem. Osteoporosis decreases bone strength and increases the risk of fracture. The finding of prevention and treatment methods is an urgent issue. Since cancellous bone is metabolically more active than cortical bone, cancellous bone is used for diagnosis of osteoporosis. There are a lot of studies about stress analysis of cancellous bon...

متن کامل

Compressive mechanical properties of demineralized and deproteinized cancellous bone.

A method to completely demineralize and deproteinize bone was used to investigate the mechanical properties of either the mineral or protein phase in cancellous bone and compared to an untreated one. Compression tests on cancellous bovine femur and elk antler (Cervus elaphus canadensis) were performed on demineralized, deproteinized, and untreated samples in an air-dry condition. Results showed...

متن کامل

Comparison of the structure and mechanical properties of bovine femur bone and antler of the North American elk (Cervus elaphus canadensis).

Antler and limb bone have a similar microstructure and chemical composition. Both are primarily composed of type I collagen and a mineral phase (carbonated apatite), arranged in osteons in compact (cortical bone) sections and a lamellar structure in the cancellous (spongy or trabecular bone) sections. The mineral content is lower in antler bone and it has a core of cancellous bone surrounded by...

متن کامل

Investigation of Stress-Strain Behavior of Plastic Concrete Using Monotonic Triaxial Compression Tests

In this paper, the mechanical behavior of plastic concrete being used in the cut-off walls of earth dams has been studied. To do the task, triaxial compression tests on the specimens in various ages and mix designs under different confining pressures have been done and the stress-strain behavior of such materials and their strength parameter changes has been experimentally investigated. It has ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2016