On Ramsey Numbers of Sparse Graphs

نویسندگان

  • Alexandr V. Kostochka
  • Benny Sudakov
چکیده

The Ramsey number, r(G), of a graph G is the minimum integer N such that, in every 2-colouring of the edges of the complete graph KN on N vertices, there is a monochromatic copy of G. In 1975, Burr and Erdős posed a problem on Ramsey numbers of d-degenerate graphs, i.e., graphs in which every subgraph has a vertex of degree at most d. They conjectured that for every d there exists a constant c(d) such that

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Planar Ramsey numbers for cycles

For two given graphs G and H the planar Ramsey number PR(G,H) is the smallest integer n such that every planar graph F on n vertices either contains a copy of G or its complement contains a copy H . By studying the existence of subhamiltonian cycles in complements of sparse graphs, we determine all planar Ramsey numbers for pairs of cycles.

متن کامل

Ramsey goodness and beyond

In a seminal paper from 1983, Burr and Erd1⁄2os started the systematic study of Ramsey numbers of cliques vs. large sparse graphs, raising a number of problems. In this paper we develop a new approach to such Ramsey problems using a mix of the Szemerédi regularity lemma, embedding of sparse graphs, Turán type stability, and other structural results. We give exact Ramsey numbers for various clas...

متن کامل

The Size-ramsey Number

The size-Ramsey number of a graph G is the smallest number of edges in a graph Γ with the Ramsey property for G, that is, with the property that any colouring of the edges of Γ with two colours (say) contains a monochromatic copy of G. The study of size-Ramsey numbers was proposed by Erdős, Faudree, Rousseau, and Schelp in 1978, when they investigated the size-Ramsey number of certain classes o...

متن کامل

The Ramsey numbers of large trees versus wheels

For two given graphs G1 and G2, the Ramseynumber R(G1,G2) is the smallest integer n such that for anygraph G of order n, either $G$ contains G1 or the complementof G contains G2. Let Tn denote a tree of order n andWm a wheel of order m+1. To the best of our knowledge, only R(Tn,Wm) with small wheels are known.In this paper, we show that R(Tn,Wm)=3n-2 for odd m with n>756m^{10}.

متن کامل

Zarankiewicz Numbers and Bipartite Ramsey Numbers

The Zarankiewicz number z(b; s) is the maximum size of a subgraph of Kb,b which does not contain Ks,s as a subgraph. The two-color bipartite Ramsey number b(s, t) is the smallest integer b such that any coloring of the edges of Kb,b with two colors contains a Ks,s in the rst color or a Kt,t in the second color.In this work, we design and exploit a computational method for bounding and computing...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Combinatorics, Probability & Computing

دوره 12  شماره 

صفحات  -

تاریخ انتشار 2003