Detection and attribution of vegetation greening trend in China over the last 30 years.
نویسندگان
چکیده
The reliable detection and attribution of changes in vegetation growth is a prerequisite for the development of strategies for the sustainable management of ecosystems. This is an extraordinary challenge. To our knowledge, this study is the first to comprehensively detect and attribute a greening trend in China over the last three decades. We use three different satellite-derived Leaf Area Index (LAI) datasets for detection as well as five different process-based ecosystem models for attribution. Rising atmospheric CO2 concentration and nitrogen deposition are identified as the most likely causes of the greening trend in China, explaining 85% and 41% of the average growing-season LAI trend (LAIGS) estimated by satellite datasets (average trend of 0.0070 yr(-1), ranging from 0.0035 yr(-1) to 0.0127 yr(-1)), respectively. The contribution of nitrogen deposition is more clearly seen in southern China than in the north of the country. Models disagree about the contribution of climate change alone to the trend in LAIGS at the country scale (one model shows a significant increasing trend, whereas two others show significant decreasing trends). However, the models generally agree on the negative impacts of climate change in north China and Inner Mongolia and the positive impact in the Qinghai-Xizang plateau. Provincial forest area change tends to be significantly correlated with the trend of LAIGS (P < 0.05), and marginally significantly (P = 0.07) correlated with the residual of LAIGS trend, calculated as the trend observed by satellite minus that estimated by models through considering the effects of climate change, rising CO2 concentration and nitrogen deposition, across different provinces. This result highlights the important role of China's afforestation program in explaining the spatial patterns of trend in vegetation growth.
منابع مشابه
Divergent Arctic-Boreal Vegetation Changes between North America and Eurasia over the Past 30 Years
Arctic-Boreal region—mainly consisting of tundra, shrub lands, and boreal forests—has been experiencing an amplified warming over the past 30 years. As the main driving force of vegetation growth in the north, temperature exhibits tight coupling with the Normalized Difference Vegetation Index (NDVI)—a proxy to photosynthetic activity. However, the comparison between North America (NA) and north...
متن کاملFrom greening to browning: Catchment vegetation development and reduced S-deposition promote organic carbon load on decadal time scales in Nordic lakes
Increased concentrations of dissolved organic carbon (DOC), often labelled "browning", is a current trend in northern, particularly boreal, freshwaters. The browning has been attributed to the recent reduction in sulphate (S) deposition during the last 2 to 3 decades. Over the last century, climate and land use change have also caused an increasing trend in vegetation cover ("greening"), and th...
متن کاملRecent ecological transitions in China: greening, browning, and influential factors
Ecological conservation and restoration are necessary to mitigate environmental degradation problems. China has taken great efforts in such actions. To understand the ecological transition during 2000-2010 in China, this study analysed trends in vegetation change using remote sensing and linear regression. Climate and socioeconomic factors were included to screen the driving forces for vegetati...
متن کاملTrends in vegetation activity and their climatic correlates: China
We combined a satellite-derived Leaf Area Index (LAI) dataset and a gridded climate dataset to analyse trends in vegetation activity and their correlation with climate variability in China between 1982 and 1998. Vegetation activity over the growing season increased 11.03% in China during the 17-year period, which is broadly consistent with the greening trend in the northern high latitudes in Eu...
متن کاملObservational Quantification of Climatic and Human Influences on Vegetation Greening in China
This study attempts to quantify the relative contributions of vegetation greening in China due to climatic and human influences from multiple observational datasets. Satellite measured vegetation greenness, Normalized Difference Vegetation Index (NDVI), and relevant climate, land cover, and socioeconomic data since 1982 are analyzed using a multiple linear regression (MLR) method. A statistical...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Global change biology
دوره 21 4 شماره
صفحات -
تاریخ انتشار 2015