Integrating qPLM and biomechanical test data with an anisotropic fiber distribution model and predictions of TGF-β1 and IGF-1 regulation of articular cartilage fiber modulus.
نویسندگان
چکیده
A continuum mixture model with distinct collagen (COL) and glycosaminoglycan elastic constituents was developed for the solid matrix of immature bovine articular cartilage. A continuous COL fiber volume fraction distribution function and a true COL fiber elastic modulus ([Formula: see text] were used. Quantitative polarized light microscopy (qPLM) methods were developed to account for the relatively high cell density of immature articular cartilage and used with a novel algorithm that constructs a 3D distribution function from 2D qPLM data. For specimens untreated and cultured in vitro, most model parameters were specified from qPLM analysis and biochemical assay results; consequently, [Formula: see text] was predicted using an optimization to measured mechanical properties in uniaxial tension and unconfined compression. Analysis of qPLM data revealed a highly anisotropic fiber distribution, with principal fiber orientation parallel to the surface layer. For untreated samples, predicted [Formula: see text] values were 175 and 422 MPa for superficial (S) and middle (M) zone layers, respectively. TGF-[Formula: see text]1 treatment was predicted to increase and decrease [Formula: see text] values for the S and M layers to 281 and 309 MPa, respectively. IGF-1 treatment was predicted to decrease [Formula: see text] values for the S and M layers to 22 and 26 MPa, respectively. A novel finding was that distinct native depth-dependent fiber modulus properties were modulated to nearly homogeneous values by TGF-[Formula: see text]1 and IGF-1 treatments, with modulated values strongly dependent on treatment.
منابع مشابه
In vitro articular cartilage growth with sequential application of IGF-1 and TGF-β1 enhances volumetric growth and maintains compressive properties.
In vitro cultures with insulin-like growth factor-1 (IGF-1) and transforming growth factor-β1 (TGF-β1) have previously been shown to differentially modulate the growth of immature bovine articular cartilage. IGF-1 stimulates expansive growth yet decreases compressive moduli and increases compressive Poisson's ratios, whereas TGF-β1 maintains tissue size, increases compressive moduli, and decrea...
متن کاملSystematic assessment of growth factor treatment on biochemical and biomechanical properties of engineered articular cartilage constructs.
OBJECTIVE To determine the effects of bone morphogenetic protein-2 (BMP-2), insulin-like growth factor (IGF-I), and transforming growth factor-beta1 (TGF-beta1) on the biochemical and biomechanical properties of engineered articular cartilage constructs under serum-free conditions. METHODS A scaffoldless approach for tissue engineering, the self-assembly process, was employed. The study consi...
متن کاملDepth-Dependent Anisotropy of the Micromechanical Properties of Porcine Articular Cartilage Measured via Atomic Force Microscopy
INTRODUCTION: Articular cartilage exhibits distinct differences in biochemical composition [1] and structure [2] of the extracellular matrix (ECM) with distance from the articular surface. These differences result in depth-dependent biomechanical properties [3, 4, 5] that can have a significant effect on the mechanical environment of the chondrocyte [6, 7]. An additional structural component of...
متن کاملThe Elastic Modulus of Steel Fiber Reinforced Concrete (SFRC) with Random Distribution of Aggregate and Fiber
The present paper offers a meso-scale numerical model to investigate the effects of random distribution of aggregate particles and steel fibers on the elastic modulus of Steel Fiber Reinforced Concrete (SFRC). Meso-scale model distinctively models coarse aggregate, cementitious mortar, and Interfacial Transition Zone (ITZ) between aggregate, mortar, and steel fibers with their respective materi...
متن کاملTGF-β1 and IGF-1 influence the re-differentiation capacity of human chondrocytes in 3D pellet cultures in relation to different oxygen concentrations.
To prevent de-differentiation of chondrocytes in vitro, the 3D environment, growth factors and different oxygen concentrations were considered. In this in vitro study, we quantified the influence of insulin-like growth factor (IGF)-1 and/or transforming growth factor (TGF)-β1 under differing oxygen (5/21% O(2)) levels on the proliferation and synthesis rates of hyaline extracellular matrix (ECM...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biomechanics and modeling in mechanobiology
دوره 12 6 شماره
صفحات -
تاریخ انتشار 2013