Detecting Torsion in Skein Modules Using Hochschild Homology

نویسنده

  • MICHAEL MCLENDON
چکیده

Given a Heegaard splitting of a closed 3-manifold, the skein modules of the two handlebodies are modules over the skein algebra of their common boundary surface. The zeroth Hochschild homology of the skein algebra of a surface with coefficients in the tensor product of the skein modules of two handlebodies is interpreted as the skein module of the 3-manifold obtained by gluing the two handlebodies together along this surface. A spectral sequence associated to the Hochschild complex is constructed and conditions are given for the existence of algebraic torsion in the skein module of this 3-manifold.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Homflypt Skein Module of a Connected Sum of 3-manifolds

Abstract. If M is a compact oriented 3-manifold, let S(M) denote the Homflypt skein module of M. We show that S(M1#M2) is isomorphic to S(M1)⊗ S(M2) modulo torsion. In fact, we show that S(M1#M2) is isomorphic to S(M1) ⊗ S(M2) if we are working over a certain localized ring. We show a similar result holds for relative skein modules. If M contains a separating 2-sphere, we give conditions under ...

متن کامل

Skein modules at the 4th roots of unity

The Kauffman bracket skein modules, S(M,A), have been calculated for A = ±1 for all 3-manifolds M by relating them to the SL2(C)-character varieties. We extend this description to the case when A is a 4th root of 1 and M is either a surface × [0, 1] or a rational homology sphere (or its submanifold).

متن کامل

Cyclic Homologies of Crossed Modules of Algebras

The Hochschild and (cotriple) cyclic homologies of crossed modules of (notnecessarily-unital) associative algebras are investigated. Wodzicki’s excision theorem is extended for inclusion crossed modules in the category of crossed modules of algebras. The cyclic and cotriple cyclic homologies of crossed modules are compared in terms of long exact homology sequence, generalising the relative cycl...

متن کامل

Filtered Topological Cyclic Homology and relative K -theory of nilpotent ideals

In this paper certain filtrations of topological Hochschild homology and topological cyclic homology are examined. As an example we show how the filtration with respect to a nilpotent ideal gives rise to an analog of a theorem of Goodwillie saying that rationally relative K -theory and relative cyclic homology agree. Our variation says that the p-torsion parts agree in a range of degrees. We us...

متن کامل

Generalized Local Homology Modules of Complexes

The theory of local homology modules was initiated by Matlis in 1974. It is a dual version of the theory of local cohomology modules. Mohammadi and Divaani-Aazar (2012) studied the connection between local homology and Gorenstein flat modules by using Gorenstein flat resolutions. In this paper, we introduce generalized local homology modules for complexes and we give several ways for computing ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008