Detecting single stranded DNA with a solid state nanopore.

نویسندگان

  • Daniel Fologea
  • Marc Gershow
  • Bradley Ledden
  • David S McNabb
  • Jene A Golovchenko
  • Jiali Li
چکیده

Voltage biased solid-state nanopores are used to detect and characterize individual single stranded DNA molecules of fixed micrometer length by operating a nanopore detector at pH values greater than approximately 11.6. The distribution of observed molecular event durations and blockade currents shows that a significant fraction of the events obey a rule of constant event charge deficit (ecd) indicating that they correspond to molecules translocating through the nanopore in a distribution of folded and unfolded configurations. A surprisingly large component is unfolded. The result is an important milestone in developing solid-state nanopores for single molecule sequencing applications.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Detecting translocation of individual single stranded DNA homopolymers through a fabricated nanopore chip.

Fabricated solid-state nanopore chips are used to probe individual single stranded DNA (ssDNA) homopolymers. Based on the analysis of the current blockage caused by DNA translocation through a voltage-biased nanopore, we discovered that the hydrodynamic diameter of ssDNA homopolymer helix is comparable to that of double stranded DNA (dsDNA) helix. This proof-of-principle demonstration shows tha...

متن کامل

Solid-state nanopore channels with DNA selectivity.

Solid-state nanopores have emerged as possible candidates for next-generation DNA sequencing devices. In such a device, the DNA sequence would be determined by measuring how the forces on the DNA molecules, and also the ion currents through the nanopore, change as the molecules pass through the nanopore. Unlike their biological counterparts, solid-state nanopores have the advantage that they ca...

متن کامل

Stretching and controlled motion of single-stranded DNA in locally heated solid-state nanopores.

Practical applications of solid-state nanopores for DNA detection and sequencing require the electrophoretic motion of DNA through the nanopores to be precisely controlled. Controlling the motion of single-stranded DNA presents a particular challenge, in part because of the multitude of conformations that a DNA strand can adopt in a nanopore. Through continuum, coarse-grained and atomistic mode...

متن کامل

Dynamics of DNA translocation in a solid-state nanopore immersed in aqueous glycerol.

Nanopore-based technologies have attracted much attention recently for their promising use in low-cost and high-throughput genome sequencing. To achieve single-base resolution of DNA sequencing, it is critical to slow and control the translocation of DNA, which has been achieved in a protein nanopore but not yet in a solid-state nanopore. Using all-atom molecular dynamics simulations, we invest...

متن کامل

Hybrid pore formation by directed insertion of α-haemolysin into solid-state nanopores.

Most experiments on nanopores have concentrated on the pore-forming protein α-haemolysin (αHL) and on artificial pores in solid-state membranes. While biological pores offer an atomically precise structure and the potential for genetic engineering, solid-state nanopores offer durability, size and shape control, and are also better suited for integration into wafer-scale devices. However, each s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nano letters

دوره 5 10  شماره 

صفحات  -

تاریخ انتشار 2005