Isolation and Characterization of Carbendazim-degrading Rhodococcus erythropolis djl-11
نویسندگان
چکیده
Carbendazim (methyl 1H-benzimidazol-2-yl carbamate) is one of the most widely used fungicides in agriculture worldwide, but has been reported to have adverse effects on animal health and ecosystem function. A highly efficient carbendazim-degrading bacterium (strain dj1-11) was isolated from carbendazim-contaminated soil samples via enrichment culture. Strain dj1-11 was identified as Rhodococcus erythropolis based on morphological, physiological and biochemical characters, including sequence analysis of the 16S rRNA gene. In vitro degradation of carbendazim (1000 mg·L(-1)) by dj1-11 in minimal salts medium (MSM) was highly efficient, and with an average degradation rate of 333.33 mg·L(-1)·d(-1) at 28°C. The optimal temperature range for carbendazim degradation by dj1-11 in MSM was 25-30°C. Whilst strain dj1-11 was capable of metabolizing cabendazim as the sole source of carbon and nitrogen, degradation was significantly (P<0.05) increased by addition of 12.5 mM NH4NO3. Changes in MSM pH (4-9), substitution of NH4NO3 with organic substrates as N and C sources or replacing Mg(2+) with Mn(2+), Zn(2+) or Fe(2+) did not significantly affect carbendazim degradation by dj1-11. During the degradation process, liquid chromatography-mass spectrometry (LC-MS) detected the metabolites 2-aminobenzimidazole and 2-hydroxybenzimidazole. A putative carbendazim-hydrolyzing esterase gene was cloned from chromosomal DNA of djl-11 and showed 99% sequence homology to the mheI carbendazim-hydrolyzing esterase gene from Nocardioides sp. SG-4G.
منابع مشابه
Rhodococcus qingshengii sp. nov., a carbendazim-degrading bacterium.
A Gram-positive, aerobic, non-motile, mesophilic strain, djl-6(T), able to degrade carbendazim, was isolated from a carbendazim-contaminated soil sample from Jiangsu province, China. The taxonomic position of this isolate was analysed by using a polyphasic approach. Chemotaxonomic analysis including peptidoglycan type, diagnostic sugar composition, fatty acid profile, menaquinones, polar lipids...
متن کاملBioremediation potential of a phenol degrading bacterium, Rhodococcus erythropolis SKO-1
Biodegradation of phenol is a major focus of toxic organic compound degradation by microorganisms isolated from polluted areas. An increasing number of bacteria and fungi possessing unique biodegradation capabilities have been isolated in recent years. In this study a new isolate, Rhodococcus erythropolis SKO-1, from polluted soils in the Tehran oil refinery region, is reported. Identificati...
متن کاملComplete Genome Sequence of Carbendazim-Degrading Mycobacterium sp. Strain djl-10
Mycobacterium sp. strain djl-10, an efficient degrader of carbendazim, was isolated from a carbendazim manufacturing wastewater treatment system. Here, we report the complete genome sequence of djl-10, which consists of a chromosome and three plasmids.
متن کاملGenome Sequence of Rhodococcus erythropolis Strain CCM2595, a Phenol Derivative-Degrading Bacterium
We announce the completion of the genome sequence of a phenol derivative-degrading bacterium, Rhodococcus erythropolis strain CCM2595. This bacterium is interesting in the context of bioremediation for its capability to degrade phenol, catechol, resorcinol, hydroxybenzoate, hydroquinone, p-chlorophenol, p-nitrophenol, pyrimidines, and sterols.
متن کاملComposite nanolayer photocatalyst-biocatalyst Rhodococcus erythropolis R1 for desulfurization of dibenzothiophene
A nanolayer of composite and Rhodococcus erythropolis biocatalyst was studied for the first time for desulfurization of dibenzothiophene as a model sulfur compound and its performance was compared with that of composite and R. erythropolis alone. The nanolayer of composite was synthesized by sol-gel method from ferrous oxalate and zinc oxalate precursors coated on glass by spin coating techniqu...
متن کامل