Paclitaxel encapsulated in cationic liposomes increases tumor microvessel leakiness and improves therapeutic efficacy in combination with Cisplatin.

نویسندگان

  • Sebastian Strieth
  • Martin E Eichhorn
  • Alexander Werner
  • Birgitta Sauer
  • Michael Teifel
  • Uwe Michaelis
  • Alexander Berghaus
  • Marc Dellian
چکیده

PURPOSE Paclitaxel encapsulated in cationic liposomes (EndoTAG-1) is a vascular targeting formulation for the treatment of solid tumors. It triggers intratumoral microthrombosis, causing significant inhibition of tumor perfusion and tumor growth associated with endothelial cell apoptosis. Here, we quantified the effects of repeated EndoTAG-1 therapy on tumor microvascular leakiness with respect to leukocyte-endothelial cell interactions, the targeting property of cationic liposomes, and the therapeutic combination with conventional cisplatin chemotherapy. EXPERIMENTAL DESIGN Using dorsal skinfold chamber preparations in Syrian Golden hamsters, in vivo fluorescence microscopy experiments were done after repeated EndoTAG-1 treatment of A-Mel-3 tumors. Controls received glucose, paclitaxel alone, or cationic liposomes devoid of paclitaxel. Extravasation of rhodamine-labeled albumin was measured to calculate microvessel permeability, and intratumoral leukocyte-endothelial cell interactions were quantified. Subcutaneous tumor growth was evaluated after combination therapy followed by histologic analysis. RESULTS Microvascular permeability was significantly increased only after treatment with EndoTAG-1, whereas intratumoral leukocyte-endothelial cell interactions were not affected by any treatment. In separate skinfold chamber experiments, fluorescently labeled cationic liposomes kept their targeting property for tumor endothelial cells after repeated EndoTAG-1 treatment and no signs of extravasation were observed. Subcutaneous A-Mel-3 tumor growth was significantly inhibited by the combination of cisplatin and EndoTAG-1. CONCLUSIONS These data show that vascular targeting with EndoTAG-1 increases tumor microvessel leakiness probably due to vascular damage. This mechanism is not mediated by inflammatory leukocyte-endothelial cell interactions. Manipulating the blood-tumor barrier by repeated tumor microvessel targeting using EndoTAG-1 can effectively be combined with tumor cell-directed conventional cisplatin chemotherapy.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Neovascular targeting therapy: paclitaxel encapsulated in cationic liposomes improves antitumoral efficacy.

PURPOSE Cationic liposomes have been shown to selectively target tumor endothelial cells. Therefore, the encapsulation of antineoplastic drugs into cationic liposomes is a promising tool to improve selective drug delivery by targeting tumor vasculature. It was the aim of our study to evaluate tumor selectivity and antitumoral efficacy of paclitaxel encapsulated in cationic liposomes in comparis...

متن کامل

Paclitaxel encapsulated in cationic liposomes: a new option for neovascular targeting for the treatment of prostate cancer.

Neovascular targeting is an established approach for the therapy of prostate cancer (PCa). Cationic liposomes have been shown to be absorbed by immature vascular endothelial cells due to negative electric charge of their outer cell membrane. We aimed to evaluate the antitumoural efficacy of paclitaxel encapsulated in cationic liposomes for the treatment of PCa. Tumours were generated by subcuta...

متن کامل

Co-delivery of cisplatin and paclitaxel by folic acid conjugated amphiphilic PEG-PLGA copolymer nanoparticles for the treatment of non-small lung cancer.

An amphiphilic copolymer, folic acid (FA) modified poly(ethylene glycol)-poly(lactic-co-glycolic acid) (FA-PEG-PLGA) was prepared and explored as a nanometer carrier for the co-delivery of cisplatin (cis-diaminodichloroplatinum, CDDP) and paclitaxel (PTX). CDDP and PTX were encapsulated inside the hydrophobic inner core and chelated to the middle shell, respectively. PEG provided the outer coro...

متن کامل

Human Erythrocyte Superoxide Dismutase Encapsulated in Positively Charged Liposomes

      Superoxide dismutase (SOD) is an important antioxidant that protects many types of cells from the free radical damage. One of the possible ways for the use of SOD is its incorporation in liposomes. The aim of this study was to investigate the effect of cationic phospholipids on the entrapment of human erythrocyte superoxide dismutase (Cu/Zn SOD) in liposomes. Also, in the present study, w...

متن کامل

The Effect of Cationic Liposomes Encapsulating pcDNA3.1+PA Plasmids on Humoral Immune Response in Mice

Background: DNA vaccines are third generation vaccines which have made promises to combat infectious diseases. Cationic liposomes are used as effective delivery systems for DNA vaccines to generate stronger immunity. Objective: Encapsulation of pcDNA3.1+PA plasmid, encoding protective antigen (PA) of Bacillus anthracis (B. anthracis) into cationic liposomes, and evaluation of its effect on spec...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Clinical cancer research : an official journal of the American Association for Cancer Research

دوره 14 14  شماره 

صفحات  -

تاریخ انتشار 2008