Graphene oxide and shape-controlled silver nanoparticle hybrids for ultrasensitive single-particle surface-enhanced Raman scattering (SERS) sensing.
نویسندگان
چکیده
Graphene oxide (GO) is an emerging material for surface-enhanced Raman scattering (SERS) due to its strong chemical enhancement. Studying the SERS performance of plasmonic nanoparticle/GO hybrid materials at the single particle level is crucial for direct probing of the chemical effect of GO on plasmonic nanoparticles. In this work, we integrate GO and shape-controlled Ag nanoparticles to create hybrid nanomaterials, and the chemical enhancement arising from GO is investigated using single-particle SERS measurements. Ag nanoparticle@GO hybrid nanostructures are prepared by assembling Ag nanoparticles, including spheres, cubes and octahedra with GO sheets. The SERS behaviors of the hybrid nanostructures are characterized, and 2-3 times enhanced SERS intensities are detected from the Ag nanoparticle@GO hybrid nanostructures as compared to pure Ag nanoparticles. Furthermore, we probe the mechanism of SERS enhancement in the hybrid nanostructures by changing the surface coverage of GO on Ag octahedra, by using reduced GO in place of GO as well as by using probe molecules of different electronegativities. This hybrid system is an excellent candidate for single-particle SERS sensors. Sub-nanomolar levels of aromatic molecules are detected using a single Ag/GO hybrid nanomaterial. This as-prepared GO and shape-controlled Ag nanoparticle hybrid is capable of serving as a high performance SERS platform, providing new opportunities for efficient chemical and biological sensing applications.
منابع مشابه
Graphene oxide based surface-enhanced Raman scattering probes for cancer cell imaging.
The intrinsic Raman signals provide the potential of graphene oxide (GO) for cellular imaging. Herein, novel surface-enhanced Raman scattering (SERS) labels based on GO-Ag nanoparticle (NP) composites are developed for fast cellular probing and imaging. The optimum SERS signals of the hybrids can be well controlled by adjusting the weight ratio between AgNO(3) and GO. Utilizing GO-AgNPs as the ...
متن کاملHighly reproducible and sensitive surface-enhanced Raman scattering from colloidal plasmonic nanoparticle via stabilization of hot spots in graphene oxide liquid crystal.
Although it is now well recognized that plasmonic gold/silver nanoparticle based aggregates having electromagnetic hot spots are responsible for high sensitivity in surface-enhanced Raman spectroscopy (SERS), the high yield and reproducible production of such nanostructures are challenging and limit their practical application. Here we show a graphene oxide (GO) based approach in generating sta...
متن کاملGraphene oxide-encoded Ag nanoshells with single-particle detection sensitivity towards cancer cell imaging based on SERRS.
Developing ultrasensitive Raman nanoprobes is one of the emerging interests in the field of biosensing and bioimaging. Herein, we constructed a new type of surface-enhanced resonance Raman scattering nanoprobe composed of an Ag nanoshell as a surface-enhanced Raman scattering-active nanostructure, which was encapsulated with 4,7,10-trioxa-1,13-tridecanediamine-functionalized graphene oxide as a...
متن کاملIn situ synthesis of silver nanoparticle decorated vertical nanowalls in a microfluidic device for ultrasensitive in-channel SERS sensing.
A microfluidic device with integrated novel silver nanoparticle (Ag NPs) decorated nanowall structures was fabricated via in situ electrodeposition of Cu-core/C-sheath nanowalls, followed by a facile in-channel silver galvanic replacement reaction method at room temperature. The integrated microfluidic devices with Ag NPs decorated nanowalls, serving as a highly active Raman substrate, were the...
متن کاملUltrasensitive SERS detection of trinitrotoluene through capillarity-constructed reversible hot spots based on ZnO-Ag nanorod hybrids.
A simple and efficient self-approach strategy was used to apply ultrasensitivity and self-revive ZnO-Ag hybrid surface-enhanced Raman scattering (SERS) sensors for the highly sensitive and selective detection of explosive TNT in both solution and vapour conditions. The good ultrasensitive sensing performance is a result of the abundant Raman hot spots, which were spontaneously formed in a rever...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nanoscale
دوره 6 9 شماره
صفحات -
تاریخ انتشار 2014