Soil-plant-atmosphere conditions regulating convective cloud formation above southeastern US pine plantations.
نویسندگان
چکیده
Loblolly pine trees (Pinus taeda L.) occupy more than 20% of the forested area in the southern United States, represent more than 50% of the standing pine volume in this region, and remove from the atmosphere about 500 g C m-2 per year through net ecosystem exchange. Hence, their significance as a major regional carbon sink can hardly be disputed. What is disputed is whether the proliferation of young plantations replacing old forest in the southern United States will alter key aspects of the hydrologic cycle, including convective rainfall, which is the focus of the present work. Ecosystem fluxes of sensible (Hs) and latent heat (LE) and large-scale, slowly evolving free atmospheric temperature and water vapor content are known to be first-order controls on the formation of convective clouds in the atmospheric boundary layer. These controlling processes are here described by a zero-order analytical model aimed at assessing how plantations of different ages may regulate the persistence and transition of the atmospheric system between cloudy and cloudless conditions. Using the analytical model together with field observations, the roles of ecosystem Hs and LE on convective cloud formation are explored relative to the entrainment of heat and moisture from the free atmosphere. Our results demonstrate that cloudy-cloudless regimes at the land surface are regulated by a nonlinear relation between the Bowen ratio Bo=Hs/LE and root-zone soil water content, suggesting that young/mature pines ecosystems have the ability to recirculate available water (through rainfall predisposition mechanisms). Such nonlinearity was not detected in a much older pine stand, suggesting a higher tolerance to drought but a limited control on boundary layer dynamics. These results enable the generation of hypotheses about the impacts on convective cloud formation driven by afforestation/deforestation and groundwater depletion projected to increase following increased human population in the southeastern United States.
منابع مشابه
Hydrologic and atmospheric controls on initiation of convective precipitation events
[1] The pathway to summertime convective precipitation remains a vexing research problem because of the nonlinear feedback between soil moisture content and the atmosphere. Understanding this feedback is important to the southeastern U. S. region, given the high productivity of the timberland area and the role of summertime convective precipitation in maintaining this productivity. Here we expl...
متن کاملUnderstanding the Fate of Applied Nitrogen in Pine Plantations of the Southeastern United States Using 15N Enriched Fertilizers
This study was conducted to determine the efficacy of using enhanced efficiency fertilizer (EEFs) products compared to urea to improve fertilizer nitrogen use efficiency (FNUE) in forest plantations. All fertilizer treatments were labeled with 15N (0.5 atom percent) and applied to 100 m2 circular plots at 12 loblolly pine stands (Pinus taeda L.) across the southeastern United States. Total fert...
متن کاملExperimental Manipulation of Precipitation Affects Soil Nitrogen Availability in Semiarid Mongolian Pine (Pinus sylvestris var. mongolica) Plantation
Expected changes in precipitation over large regions of the world under global climate change will have profound effects on terrestrial ecosystems in arid and semiarid regions. To explore how changes in the amount of precipitation in the growing season would affect soil nitrogen (N) availability in a semiarid ecosystem, we established rainout shelters and irrigation systems by simulating 30% re...
متن کاملAerosol effect on the evolution of the thermodynamic properties of warm convective cloud fields
Convective cloud formation and evolution strongly depend on environmental temperature and humidity profiles. The forming clouds change the profiles that created them by redistributing heat and moisture. Here we show that the evolution of the field's thermodynamic properties depends heavily on the concentration of aerosol, liquid or solid particles suspended in the atmosphere. Under polluted con...
متن کاملAbove- and Belowground Competition from Longleaf Pine Plantations Limits Performance of Reintroduced Herbaceous Species
Although overstory trees limit the abundance and species richness of herbaceous vegetation in longleaf pine (Pinus palustris Mill.) plantations, the responsible mechanisms are poorly understood because of confounding among limiting factors. In fall 1998, research was initiated to determine the separate effects of aboveand belowground competition and needlefall from overstory pines on understory...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Global change biology
دوره 22 6 شماره
صفحات -
تاریخ انتشار 2016