Aerosol Optical Properties and Determination of Aerosol Size Distribution in Wuhan, China

نویسندگان

  • Wei Gong
  • Shanshan Zhang
  • Yingying Ma
چکیده

Columnar aerosol volume size distributions from March 2012 to February 2013 in Wuhan, China, were investigated with a focus on monthly and seasonal variations in the aerosol optical depths (AODs) and Ångström exponents. AOD is wavelength dependent, and for AOD at, for example, 500 nm, the seasonal averaged AOD value decreased in the order of winter (~0.84), spring (~0.83), summer (~0.76) and autumn (~0.55). The Ångström exponent suggested that the aerosol sizes in summer (~1.22), winter (~1.14), autumn (~1.06) and spring (~0.99) varied from fine to coarse particles. The Ångström exponent and AOD could provide a qualitative evaluation of ASD. Moreover, aerosol size distribution (ASD) was larger in winter than the other three seasons, especially from 1.0 μm to 15 μm due to heavy anthropogenic aerosol and damp climate. The ASD spectral shape showed a bimodal distribution in autumn, winter, and spring, with one peak (<0.1) in the fine mode range and the other (>0.14) in the coarse mode range. However, there appeared to be a trimodal distribution during summer, with two peaks in the coarse mode, which might be due to the hygroscopic growth of the local particles and the generation of aerosol precursor resulting from the extreme-high temperature and relative humidity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Aerosol Optical Properties and Direct Radiative Effects over Central China

Central China is important for aerosols and climate because it is among the worst regions for air pollution in China. However, it is understudied due to a lag in establishing an atmospheric monitoring network. So we did a comprehensive analysis using multiple techniques to improve the understanding of aerosol optical properties and their radiative effect in this region. The results showed that ...

متن کامل

Aerosol Optical Properties of a Haze Episode in Wuhan Based on Ground-Based and Satellite Observations

A severe haze episode that occurred in Wuhan, central China, from 6–14 June 2012 was investigated using ground-based and satellite-derived observations, from which the optical properties and vertical distribution of the aerosols were obtained. The mass concentrations of PM2.5 and black carbon (BC) were 9.9 (332.79 versus 33.66 μg·m) and 3.2 times (9.67 versus 2.99 μg·m) greater, respectively, o...

متن کامل

Mie LIDAR Observations of Tropospheric Aerosol over Wuhan

Wuhan is a rapidly developing large city in central China. To analyze the aerosol characteristics over Wuhan, the optical properties of the nocturnal aerosol layers in the lower troposphere were observed using a ground-based LIDAR(Light Detection And Ranging) located in the Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing (LIESMARS) from Wuhan University, China (11...

متن کامل

Investigation of Physical Effects on Nanoparticle Size in Aerosol Solvent Extraction System

Aerosol solvent extraction system (ASES) was used to prepare micro-particle of acetaminophen by supercritical carbon dioxide as an anti-solvent. Experiment was carried out at various temperatures, pressures, solvents and investigated the effects of these parameters on particle size, size distribution and morphology by SEM and laser diffraction particle size analyzer. It seems that the choice of...

متن کامل

Spatio-temporal variability of aerosol characteristics in Iran using remotely sensed datasets

The present study is the first attempt to examine temporal and spatial characteristics of aerosol properties and classify their modes over Iran. The data used in this study include the records of Aerosol Optical Depth (AOD) and Angstrom Exponent (AE) from MODerate Resolution Imaging Spectroradiometer (MODIS) and Aerosol Index (AI) from the Ozone Monitoring Instrument (OMI), obtained from 2005 t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014