Multi-interval Discretization of Continuous Attributes for Label Ranking

نویسندگان

  • Cláudio Rebelo de Sá
  • Carlos Soares
  • Arno J. Knobbe
  • Paulo J. Azevedo
  • Alípio Mário Jorge
چکیده

Label Ranking (LR) problems, such as predicting rankings of financial analysts, are becoming increasingly important in data mining. While there has been a significant amount of work on the development of learning algorithms for LR in recent years, preprocessing methods for LR are still very scarce. However, some methods, like Naive Bayes for LR and APRIORI-LR, cannot deal with real-valued data directly. As a make-shift solution, one could consider conventional discretization methods used in classification, by simply treating each unique ranking as a separate class. In this paper, we show that such an approach has several disadvantages. As an alternative, we propose an adaptation of an existing method, MDLP, specifically for LR problems. We illustrate the advantages of the new method using synthetic data. Additionally, we present results obtained on several benchmark datasets. The results clearly indicate that the discretization is performing as expected and in most cases improves the results of the learning algorithms.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Discretizing Continuous Attributes in AdaBoost for Text Categorization

We focus on two recently proposed algorithms in the family of “boosting”-based learners for automated text classification, AdaBoost.MH and AdaBoost.MH. While the former is a realization of the well-known AdaBoost algorithm specifically aimed at multi-label text categorization, the latter is a generalization of the former based on the idea of learning a committee of classifier sub-committees. Bo...

متن کامل

Ranking the Uniformity of Interval Pairs

We study the problem of finding the most uniform partition of the class label distribution on an interval. This problem occurs, e.g., in supervised discretization of continuous features, where evaluation heuristics need to find the location of the best place to split the current feature. The weighted average of empirical entropies of the interval label distributions is often used in this task. ...

متن کامل

Multi-Interval Discretization of Continuous-Valued Attributes for Classification Learning

Since most real-world applications of classification learning involve continuous-valued attributes, properly addressing the discretization process is an important problem. This paper addresses the use of the entropy minimization heuristic for discretizing the range of a continuous-valued attribute into multiple intervals. We briefly present theoretical evidence for the appropriateness of this h...

متن کامل

Interval MULTIMOORA method with target values of attributes based on interval distance and preference degree: biomaterials selection

A target-based MADM method covers beneficial and non-beneficial attributes besides target values for some attributes. Such techniques are considered as the comprehensive forms of MADM approaches. Target-based MADM methods can also be used in traditional decision-making problems in which beneficial and non-beneficial attributes only exist. In many practical selection problems, some attributes ha...

متن کامل

Improved Use of Continuous Attributes in C 4

A reported weakness of C4.5 in domains with continuous attributes is addressed by modifying the formation and evaluation of tests on continuous attributes. An MDL-inspired penalty is applied to such tests, eliminating some of them from consideration and altering the relative desirability of all tests. Empirical trials show that the modiications lead to smaller decision trees with higher predict...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013