Arterivirus discontinuous mRNA transcription is guided by base pairing between sense and antisense transcription-regulating sequences.

نویسندگان

  • G van Marle
  • J C Dobbe
  • A P Gultyaev
  • W Luytjes
  • W J Spaan
  • E J Snijder
چکیده

To generate an extensive set of subgenomic (sg) mRNAs, nidoviruses (arteriviruses and coronaviruses) use a mechanism of discontinuous transcription. During this process, mRNAs are generated that represent the genomic 5' sequence, the so-called leader RNA, fused at specific positions to different 3' regions of the genome. The fusion of the leader to the mRNA bodies occurs at a short, conserved sequence element, the transcription-regulating sequence (TRS), which precedes every transcription unit in the genome and is also present at the 3' end of the leader sequence. Here, we have used site-directed mutagenesis of the infectious cDNA clone of the arterivirus equine arteritis virus to show that sg mRNA synthesis requires a base-pairing interaction between the leader TRS and the complement of a body TRS in the viral negative strand. Mutagenesis of the body TRS of equine arteritis virus RNA7 reduced sg RNA7 transcription severely or abolished it completely. Mutations in the leader TRS dramatically influenced the synthesis of all sg mRNAs. The construction of double mutants in which a mutant leader TRS was combined with the corresponding mutant RNA7 body TRS resulted in the specific restoration of mRNA7 synthesis. The analysis of the mRNA leader-body junctions of a number of mutants with partial transcriptional activity provided support for a mechanism of discontinuous minus-strand transcription that resembles similarity-assisted, copy-choice RNA recombination.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Discontinuous subgenomic RNA synthesis in arteriviruses is guided by an RNA hairpin structure located in the genomic leader region.

Nidoviruses produce an extensive 3'-coterminal nested set of subgenomic (sg) mRNAs, which are used to express structural proteins and sometimes accessory proteins. In arteriviruses and coronaviruses, these mRNAs contain a common 5' leader sequence, derived from the genomic 5' end. The joining of the leader sequence to different segments derived from the 3'-proximal part of the genome (mRNA bodi...

متن کامل

Nidovirus transcription: how to make sense...?

Many positive-stranded RNA viruses use subgenomic mRNAs to express part of their genetic information. To produce structural and accessory proteins, members of the order Nidovirales (corona-, toro-, arteri- and roniviruses) generate a 3' co-terminal nested set of at least three and often seven to nine mRNAs. Coronavirus and arterivirus subgenomic transcripts are not only 3' co-terminal but also ...

متن کامل

Identification of a coronavirus transcription enhancer.

Coronavirus (CoV) transcription includes a discontinuous mechanism during the synthesis of sub-genome-length minus-strand RNAs leading to a collection of mRNAs in which the 5' terminal leader sequence is fused to contiguous genome sequences. It has been previously shown that transcription-regulating sequences (TRSs) preceding each gene regulate transcription. Base pairing between the leader TRS...

متن کامل

Role of nucleotides immediately flanking the transcription-regulating sequence core in coronavirus subgenomic mRNA synthesis.

The generation of subgenomic mRNAs in coronavirus involves a discontinuous mechanism of transcription by which the common leader sequence, derived from the genome 5' terminus, is fused to the 5' end of the mRNA coding sequence (body). Transcription-regulating sequences (TRSs) precede each gene and include a conserved core sequence (CS) surrounded by relatively variable sequences (5' TRS and 3' ...

متن کامل

Sequence motifs involved in the regulation of discontinuous coronavirus subgenomic RNA synthesis.

Coronavirus transcription leads to the synthesis of a nested set of mRNAs with a leader sequence derived from the 5' end of the genome. The mRNAs are produced by a discontinuous transcription in which the leader is linked to the mRNA coding sequences. This process is regulated by transcription-regulating sequences (TRSs) preceding each mRNA, including a highly conserved core sequence (CS) with ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 96 21  شماره 

صفحات  -

تاریخ انتشار 1999