2D numerical study of the radiation influence on shock structure relevant to laboratory astrophysics
نویسندگان
چکیده
Context. Radiative shocks are found in various astrophysical objects and particularly at different stages of stellar evolution. Studying radiative shocks, their topology, and thermodynamical properties is therefore a starting point to understanding their physical properties. This study has become possible with the development of large laser facilities, which has provided fresh impulse to laboratory astrophysics. Aims. We present the main characteristics of radiative shocks modeled using cylindrical simulations. We focus our discussion on the importance of multi-dimensional radiative-transfer effects on the shock topology and dynamics. Methods. We present results obtained with our code HERACLES for conditions corresponding to experiments already performed on laser installations. The multi-dimensional hydrodynamic code HERACLES is specially adapted to laboratory astrophysics experiments and to astrophysical situations where radiation and hydrodynamics are coupled. Results. The importance of the ratio of the photon mean free path to the transverse extension of the shock is emphasized. We present how it is possible to achieve the stationary limit of these shocks in the laboratory and analyze the angular distribution of the radiative flux that may emerge from the walls of the shock tube. Conclusions. Implications of these studies for stellar accretion shocks are presented.
منابع مشابه
Numerical simulation of supernova-relevant laser-driven hydro experiments on OMEGA
In ongoing experiments performed on the OMEGA laser @J. M. Soures et al., Phys. Plasmas 5, 2108 ~1996!# at the University of Rochester Laboratory for Laser Energetics, nanosecond laser pulses are used to drive strong blast waves into two-layer targets. Perturbations on the interface between the two materials are unstable to the Richtmyer–Meshkov instability as a result of shock transit and the ...
متن کاملThe influence of respiratory motion on dose distribution of 3D-CRT and IMRT- A simulation study
Background: 3DCRT (three-dimensional conformal radiotherapy) and IMRT (intensity-modulated radiotherapy) has provided us with tools to delineate the radiation dose distribution of tumor targets. However, the precision of radiation can be compromised by respiratory motion, which usually limits the geometric and dosimetric accuracy of radiotherapy. The purpose of this study is to evaluate the imp...
متن کاملNumerical Study of the Mass Transfer Effects on the Flow and Thermal Fields Structures under the Influence of Natural Convection
In this paper, a numerical study has been carried out for coupled mass, momentum and heat transfer in the field under effects of natural convection. For this purpose, the unsteady incompressible Navier-Stokes equations with the terms of the Buoyancy forces (due to temperature gradients), energy conservation and concentration (mass) transfer equations have been simultaneously solved using approp...
متن کاملDamage Detection in Post-tensioned Slab Using 2D Wavelet Transforms
Earthquake force, loading more than structural capacity, cracking, material fatigue and the other unpredicted events were undeniable in the structure life cycle in order that environmental conditions of the structure would be changed and treats health. Damage of structures such as crack, corrosion of the post tension cables from inappropriate grouting of the post tension structures and etc. can...
متن کاملInfluence of Thermal Radiation Models on Prediction of Reactive Swirling Methane/Air Flame in a Model Gas Turbine Combustor
A numerical simulation of reactive swirling methane/air non-premixed flame in a new three-dimensional model combustion chamber is carried out to assess the performance of two thermal radiation models, namely, the Discrete Transfer Radiation Model and the P-1 Model. A Finite Volume staggered grid approach is employed to solve the governing equations.The second-order upwind scheme is applied for...
متن کامل