Manipulation of combustion waves in carbon-nanotube/fuel composites by highly reactive Mg nanoparticles.
نویسندگان
چکیده
Manipulating the interface of micro/nanostructured materials and chemical fuels can change the fundamental characteristics of combustion waves that are generated during a reaction. In this study, we report that Mg/MgO nanoparticles actively amplify the propagation of combustion waves at the interface of multi-walled carbon nanotubes (MWCNTs) and chemical fuels. Fuel/MWCNT and fuel/MWCNT-Mg/MgO composite films were prepared by a facile synthetic method. We present complete physiochemical characterization of these composite films and evaluate the propagating velocities and real-time surface temperatures of combustion waves. Mg/MgO nanoparticles at the interface enhanced the reaction front velocity by 41%. The resulting explosive reactions supplied additional thermal energy to the chemical fuel, accelerating flame propagation. Furthermore, the surface temperatures of the composites with Mg/MgO nanoparticles were much lower, indicating how the transient heat from the reaction would ignite the unreacted fuels at lower surface temperatures despite not reaching the necessary activation energy for a chain reaction. This mechanism contributed to thermopower waves that amplified the output voltage. Furthermore, large temperature gradients due to the presence of nanoparticles increased charge transport inside the nanostructured material, due to the increased thermoelectric effects. This manipulation could contribute to the active control of interfacially driven combustion waves along nanostructured materials, yielding many potential applications.
منابع مشابه
Effect of Carbon Nanotube and Surfactant on Processing, Mechanical, Electrical and EMI-Shielding of Epoxy Composites
Dispersing nanoparticles in a polymer matrix is intrinsically challenging due to unfavorable entropic interactions between the matrix and the nanoparticle. In this research dispersion of nanoparticles in polymer matrix was studied and the effect of dispersion on properties was investigated. The properties of polymer composite depend on the type, size, shape, concentration of nanoparticles, and ...
متن کاملInvestigation of the effect of the structure of large-area carbon nanotube/fuel composites on energy generation from thermopower waves
Thermopower waves are a recently developed energy conversion concept utilizing dynamic temperature and chemical potential gradients to harvest electrical energy while the combustion wave propagates along the hybrid layers of nanomaterials and chemical fuels. The intrinsic properties of the core nanomaterials and chemical fuels in the hybrid composites can broadly affect the energy generation, a...
متن کاملStudies on Effect of Injection Timing of Graphene Nanoparticles Blended Simarouba Biodiesel Blend on CI Engine
Graphene is a monolayer carbon atoms discovered in the recent past which has inspired researchers in a wide range of applications. It has a surface area as high as 2630 m2/g and thermal conductivity value of 3000 W/mK-1 at room temperature. It is chemically the most reactive form of carbon with one carbon atom exposed to reaction from each side. Stable dispersion of graphene was achieved using ...
متن کاملElectrophoretic Deposition of Microwave Combustion Synthesized Hydroxyapatite and Its Carbon Nanotube Reinforced Nanocomposite on 316L Stainless Steel
Nanohydroxyapatite-carbon nanotube Nanocomposite (HA-CNT) coatings were deposited via electrophoretic deposition (EPD). Hydroxyapatite was synthesized via microwave combustion method using calcium nitrate and glycing as starting materials. X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) revealed that pure hydroxyapatite nanoparticles have been synthesized. AISI 316L s...
متن کاملOxygen reduction reaction on Pt/C at the presence of super paramagnetic of Fe3O4 nanoparticles for PEMFCs
In this paper the role of super paramagnetic iron oxide nanoparticles (SPI) on Platinum nanoclusters on activated carbon (Pt/C) for electrocatalytic oxygen reduction reaction was considered. Four composites of Pt/C and super paramagnetic iron oxide nanoparticles were prepared with the same total composites weight and different loading of Pt/C (1.2, 0.6, 0.4 and 0.3 mg ). The composite attached ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nanoscale
دوره 7 40 شماره
صفحات -
تاریخ انتشار 2015