NMDA receptor GluN2B (GluR epsilon 2/NR2B) subunit is crucial for channel function, postsynaptic macromolecular organization, and actin cytoskeleton at hippocampal CA3 synapses.
نویسندگان
چکیده
GluN2B (GluRepsilon2/NR2B) subunit is involved in synapse development, synaptic plasticity, and cognitive function. However, its roles in synaptic expression and function of NMDA receptors (NMDARs) in the brain remain mostly unknown because of the neonatal lethality of global knock-out mice. To address this, we generated conditional knock-out mice, in which GluN2B was ablated exclusively in hippocampal CA3 pyramidal cells. By immunohistochemistry, GluN2B disappeared and GluN1 (GluRzeta1/NR1) was moderately reduced, whereas GluN2A (GluRepsilon1/NR2A) and postsynaptic density-95 (PSD-95) were unaltered in the mutant CA3. This was consistent with protein contents in the CA3 crude fraction: 9.6% of control level for GluN2B, 47.7% for GluN1, 90.6% for GluN2A, and 98.0% for PSD-95. Despite the remaining NMDARs, NMDAR-mediated currents and long-term potentiation were virtually lost at various CA3 synapses. Then, we compared synaptic NMDARs by postembedding immunogold electron microscopy and immunoblot using the PSD fraction. In the mutant CA3, GluN1 was severely reduced in both immunogold (20.6-23.6%) and immunoblot (24.6%), whereas GluN2A and PSD-95 were unchanged in immunogold but markedly reduced in the PSD fraction (51.4 and 36.5%, respectively), indicating increased detergent solubility of PSD molecules. No such increased solubility was observed for GluN2B in the CA3 of GluN2A-knock-out mice. Furthermore, significant decreases were found in the ratio of filamentous to globular actin (49.5%) and in the density of dendritic spines (76.2%). These findings suggest that GluN2B is critically involved in NMDAR channel function, organization of postsynaptic macromolecular complexes, formation or maintenance of dendritic spines, and regulation of the actin cytoskeleton.
منابع مشابه
NMDA Receptor GluN2B (GluR 2/NR2B) Subunit Is Crucial for Channel Function, Postsynaptic Macromolecular Organization, and Actin Cytoskeleton at Hippocampal CA3 Synapses
were found in the ratio of filamentous to globular actin (49.5%) and in the density of dendritic spines (76.2%). These findings suggest that GluN2B is critically involved in NMDAR channel function, organization of postsynaptic macromolecular complexes, formation or maintenance of dendritic spines, and regulation of the actin cytoskeleton.
متن کاملInduction and expression of GluA1 (GluR-A)-independent LTP in the hippocampus
Long-term potentiation (LTP) at hippocampal CA3-CA1 synapses is thought to be mediated, at least in part, by an increase in the postsynaptic surface expression of alpha-amino-3-hydroxy-5-methyl-4-isoxazole proprionic acid (AMPA) receptors induced by N-methyl-d-aspartate (NMDA) receptor activation. While this process was originally attributed to the regulated synaptic insertion of GluA1 (GluR-A)...
متن کاملInput-specific targeting of NMDA receptor subtypes at mouse hippocampal CA3 pyramidal neuron synapses.
Hippocampal CA3 pyramidal neurons receive synaptic inputs from commissural and associational fibers on both apical and basal dendrites. NMDA receptors at these synapses were examined in hippocampal slices of wild-type mice and GluRvarepsilon1 (NR2A) subunit knockout mice. Electrical stimulations at the CA3 stratum radiatum or stratum oriens activate both commissural and associational (C/A) syna...
متن کاملRole of the Carboxy-Terminal Region of the GluRε2 Subunit in Synaptic Localization of the NMDA Receptor Channel
The synaptic localization of the N-methyl-D-aspartate (NMDA) type glutamate receptor (GluR) channel is a prerequisite for synaptic plasticity in the brain. We generated mutant mice carrying the carboxy-terminal truncated GluR epsilon2 subunit of the NMDA receptor channel. The mutant mice died neonatally and failed to form barrelette structures in the brainstem. The mutation greatly decreased th...
متن کاملPresynaptic Spike Timing-Dependent Long-Term Depression in the Mouse Hippocampus
Spike timing-dependent plasticity (STDP) is a Hebbian learning rule important for synaptic refinement during development and for learning and memory in the adult. Given the importance of the hippocampus in memory, surprisingly little is known about the mechanisms and functions of hippocampal STDP. In the present work, we investigated the requirements for induction of hippocampal spike timing-de...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 29 35 شماره
صفحات -
تاریخ انتشار 2009