Prediction of Canopy Heights over a Large Region Using Heterogeneous Lidar Datasets: Efficacy and Challenges
نویسندگان
چکیده
Generating accurate and unbiased wall-to-wall canopy height maps from airborne lidar data for large regions is useful to forest scientists and natural resource managers. However, mapping large areas often involves using lidar data from different projects, with varying acquisition parameters. In this work, we address the important question of whether one can accurately model canopy heights over large areas of the Southeastern US using a very heterogeneous dataset of small-footprint, discrete-return airborne lidar data (with 76 separate lidar projects). A unique aspect of this effort is the use of nationally uniform and extensive field data (~1800 forested plots) from the Forest Inventory and Analysis (FIA) program of the US Forest Service. Preliminary results are quite promising: Over all lidar projects, we observe a good correlation between the 85th percentile of lidar heights and field-measured height (r = 0.85). We construct a linear regression model to predict subplot-level dominant tree heights from distributional lidar metrics (R2 = 0.74, RMSE = 3.0 m, n = 1755). We also identify and quantify the importance of several factors (like heterogeneity of vegetation, point density, the predominance of hardwoods or softwoods, the average height of the forest stand, slope of the plot, and average scan angle of lidar acquisition) that influence the efficacy of predicting canopy heights from lidar data. For example, a subset of plots (coefficient of variation of vegetation heights <0.2) significantly reduces the RMSE of our model from 3.0–2.4 m (~20% reduction). We conclude that when all these elements are factored OPEN ACCESS Remote Sens. 2015, 7 11037 into consideration, combining data from disparate lidar projects does not preclude robust estimation of canopy heights.
منابع مشابه
Estimation of aboveground biomass using airborne LiDAR data
In this study a semi-empirical model that was originally developed for stem volume estimation is used for aboveground biomass (AGB) estimation. The semi-empirical model is based on the relative heights of first echo LiDAR point cloud data and assumes a linear relationship between AGB and canopy volume. However, the usage of point cloud data leads to a computationally demanding task when process...
متن کاملAirborne lidar-based estimates of tropical forest structure in complex terrain: opportunities and trade-offs for REDD+
BACKGROUND Carbon stocks and fluxes in tropical forests remain large sources of uncertainty in the global carbon budget. Airborne lidar remote sensing is a powerful tool for estimating aboveground biomass, provided that lidar measurements penetrate dense forest vegetation to generate accurate estimates of surface topography and canopy heights. Tropical forest areas with complex topography prese...
متن کاملVoxel-Based Spatial Filtering Method for Canopy Height Retrieval from Airborne Single-Photon Lidar
Airborne single-photon lidar (SPL) is a new technology that holds considerable potential for forest structure and carbon monitoring at large spatial scales because it acquires 3D measurements of vegetation faster and more efficiently than conventional lidar instruments. However, SPL instruments use green wavelength (532 nm) lasers, which are sensitive to background solar noise, and therefore SP...
متن کاملMapping Forest Canopy Height over Continental China Using Multi-Source Remote Sensing Data
Spatially-detailed forest height data are useful to monitor local, regional and global carbon cycle. LiDAR remote sensing can measure three-dimensional forest features but generating spatially-contiguous forest height maps at a large scale (e.g., continental and global) is problematic because existing LiDAR instruments are still data-limited and expensive. This paper proposes a new approach bas...
متن کاملDeciduous Forest Structure Estimated with LIDAR-Optimized Spectral Remote Sensing
Coverage and frequency of remotely sensed forest structural information would benefit from single orbital platforms designed to collect sufficient data. We evaluated forest structural information content using single-date Hyperion hyperspectral imagery collected over full-canopy oak-hickory forests in the Ozark National Forest, Arkansas, USA. Hyperion spectral derivatives were used to develop m...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Remote Sensing
دوره 7 شماره
صفحات -
تاریخ انتشار 2015