Hilar GABAergic Interneuron Activity Controls Spatial Learning and Memory Retrieval
نویسندگان
چکیده
BACKGROUND Although extensive research has demonstrated the importance of excitatory granule neurons in the dentate gyrus of the hippocampus in normal learning and memory and in the pathogenesis of amnesia in Alzheimer's disease (AD), the role of hilar GABAergic inhibitory interneurons, which control the granule neuron activity, remains unclear. METHODOLOGY AND PRINCIPAL FINDINGS We explored the function of hilar GABAergic interneurons in spatial learning and memory by inhibiting their activity through Cre-dependent viral expression of enhanced halorhodopsin (eNpHR3.0)--a light-driven chloride pump. Hilar GABAergic interneuron-specific expression of eNpHR3.0 was achieved by bilaterally injecting adeno-associated virus containing a double-floxed inverted open-reading frame encoding eNpHR3.0 into the hilus of the dentate gyrus of mice expressing Cre recombinase under the control of an enhancer specific for GABAergic interneurons. In vitro and in vivo illumination with a yellow laser elicited inhibition of hilar GABAergic interneurons and consequent activation of dentate granule neurons, without affecting pyramidal neurons in the CA3 and CA1 regions of the hippocampus. We found that optogenetic inhibition of hilar GABAergic interneuron activity impaired spatial learning and memory retrieval, without affecting memory retention, as determined in the Morris water maze test. Importantly, optogenetic inhibition of hilar GABAergic interneuron activity did not alter short-term working memory, motor coordination, or exploratory activity. CONCLUSIONS AND SIGNIFICANCE Our findings establish a critical role for hilar GABAergic interneuron activity in controlling spatial learning and memory retrieval and provide evidence for the potential contribution of GABAergic interneuron impairment to the pathogenesis of amnesia in AD.
منابع مشابه
Apolipoprotein E4 causes age- and Tau-dependent impairment of GABAergic interneurons, leading to learning and memory deficits in mice.
Apolipoprotein E4 (apoE4) is the major genetic risk factor for Alzheimer's disease. However, the underlying mechanisms are unclear. We found that female apoE4 knock-in (KI) mice had an age-dependent decrease in hilar GABAergic interneurons that correlated with the extent of learning and memory deficits, as determined in the Morris water maze, in aged mice. Treating apoE4-KI mice with daily peri...
متن کاملEnhancing GABA Signaling during Middle Adulthood Prevents Age-Dependent GABAergic Interneuron Decline and Learning and Memory Deficits in ApoE4 Mice.
UNLABELLED Apolipoprotein E4 (apoE4) is the major genetic risk factor for Alzheimer's disease (AD). However, the underlying mechanisms are still poorly understood. We previously reported that female apoE4 knock-in (KI) mice had an age-dependent decline in hilar GABAergic interneurons that correlated with the extent of learning and memory deficits, as determined by Morris water maze (MWM), in ag...
متن کاملApolipoprotein E4 Causes Age- and Sex-Dependent Impairments of Hilar GABAergic Interneurons and Learning and Memory Deficits in Mice
Apolipoprotein (apo) E4 is the major genetic risk factor for Alzheimer's disease (AD). ApoE4 has sex-dependent effects, whereby the risk of developing AD is higher in apoE4-expressing females than males. However, the mechanism underlying the sex difference, in relation to apoE4, is unknown. Previous findings indicate that apoE4 causes age-dependent impairments of hilar GABAergic interneurons in...
متن کاملEffect of 3 Alpha-Anderostanediol and Indomethacin on Acquisition, Consolidation and Retrieval Stage of Spatial Memory in Adult Male Rats
Background: Testosterone and its metabolites have important roles in learning and memory. The current study has conducted to assess the effect of pre-training, post-training and pre-probe trial intrahippocampal CA1 administration of 3 alpha-anderostanediol (one of the metabolites of testosterone) and indomethacin (as 3 alpha-hydroxysteroid dehydrogenase enzyme blocker) on acquisition, consolida...
متن کاملKisspeptin-13 Improves Spatial Memory Consolidation and Retrieval against Amyloid-β Pathology
It has been shown that brain glucose metabolism impairment, obesity, and diabetes couldlead to cognitive decline and Alzheimer’s disease (AD) pathogenesis. Kisspeptin (KP) a G-proteincoupled receptor neuropeptide, has been suggested as a link between energy balance andreproduction. Some studies have shown that the attenuation of KP signaling decreases metabolismand energ...
متن کامل