Maximal Nilpotent Quotients of 3-manifold Groups
نویسنده
چکیده
We show that if the lower central series of the fundamental group of a closed oriented 3-manifold stabilizes then the maximal nilpotent quotient is a cyclic group, a quaternion 2-group cross an odd order cyclic group, or a Heisenberg group. These groups are well known to be precisely the nilpotent fundamental groups of closed oriented 3-manifolds.
منابع مشابه
Computing Polycyclic Quotients of Finitely (L-)Presented Groups via Groebner Bases
We announce the development and implementation of a new GAP package PCQL. This facilitates the computation of consistent polycyclic presentations for polycyclic quotients of groups defined by a so-called finite L-presentation. This type of presentation incorporates all finite presentations as well as certain infinite presentations. The algorithm allows a variety of polycyclic quotients ranging ...
متن کاملMaximal symmetry groups of hyperbolic 3-manifolds
Every finite group acts as the full isometry group of some compact hyperbolic 3-manifold. In this paper we study those finite groups which act maximally, that is when the ratio |Isom(M)|/vol(M) is maximal among all such manifolds. In two dimensions maximal symmetry groups are called Hurwitz groups, and arise as quotients of the (2,3,7)–triangle group. Here we study quotients of the minimal co-v...
متن کاملBetti Number Estimates for Nilpotent Groups
We prove an extension of the following result of Lubotzky and Madid on the rational cohomology of a nilpotent group G: If b1 < ∞ and G⊗Q = 0,Q,Q then b2 > b1/4. Here the bi are the rational Betti numbers of G and G ⊗ Q denotes the Malcev-completion of G. In the extension, the bound is improved when the relations of G are known to all have at least a certain commutator length. As an application ...
متن کاملResidual Properties of Fibered and Hyperbolic 3–manifolds
We study the residual properties of geometric 3–manifold groups. In particular, we study conditions under which geometric 3–manifold groups are virtually residually p for a prime p, and conditions under which they are residually torsion–free nilpotent. We show that for every prime p, every geometric 3–manifold group is virtually residually p. We show that geometric 3– manifold groups are virtua...
متن کاملThe Milnor degree of a 3-manifold
The Milnor degree of a 3-manifold is an invariant that records the maximum simplicity, in terms of higher-order linking, of any link in the 3-sphere that can be surgered to give the manifold. This invariant is investigated in the context of torsion linking forms, nilpotent quotients of the fundamental group, Massey products and quantum invariants, and the existence of 3-manifolds with any presc...
متن کامل