Design of self-checking fully differential circuits and boards
نویسندگان
چکیده
A design methodology for on-line testing analog linear fully differential (FD) circuits is presented in this work. The test strategy is based on concurrently monitoring via an analog checker the common mode (CM) at the inputs of all amplifiers. The totally self-checking (TSC) goal is achieved for linear FD implementations provided that the checker CM threshold is small enough with respect to the specified margins of erroneous behavior in the circuit outputs. The design methodology is illustrated for a switched-capacitor biquadratic filter and the self-checking properties evaluated for a hard/soft-fault model. A large checker threshold of 100 mV of CM is chosen since the filter implementation does not minimize nonidealities (e.g., amplifier offsets or clock feedthrough) which result in significant CM components. The circuit outputs are accepted to deviate within a 10% band. With the implemented checker, the TSC goal is not achieved for some faults in narrow regions of the frequency band. For the worst case, a hard fault which results in a 31% deviation is undetected in only a narrow band of approximately 310 Hz. The circuit can be made TSC with a checker threshold of 40 mV and an accepted output deviation of 15%. This is, however, more demanding on the checker (which currently takes less than 3% of the total area and about 7.6% of the total power) and requires an improved filter implementation to reduce CM components. Our solution consists of relaxing a bit the TSC property of the functional block and applying a periodical off-line test to make the checker strongly code disjoint (SCD). This is easy to implement since an off-line test is also required for the checker. The checker outputs a double-rail error indication which ensures compatibility with digital checkers and makes the design of self-checking mixed signal circuits straightforward. The circuit-level mixed-signal approach is extended to the board level by means of the IEEE Std. 1149.1 digital test bus.
منابع مشابه
Applications of Fuzzy Program Graph in Symbolic Checking of Fuzzy Flip-Flops
All practical digital circuits are usually a mixture of combinational and sequential logic. Flip–flops are essential to sequential logic therefore fuzzy flip–flops are considered to be among the most essential topics of fuzzy digital circuit. The concept of fuzzy digital circuit is among the most interesting applications of fuzzy sets and logic due to the fact that if there has to be an ultimat...
متن کاملDesign and synthesis of self-checking VLSI circuits
Self-checking circuits can detect the presence of both transient and permanent faults. A self-checking circuit consists of a functional circuit, which produces encoded output vectors, and a checker, which checks the output vectors. The checker has the ability to expose its own faults as well. The functional circuit can be either combinational or sequential. A self-checking system consists of an...
متن کاملA Fast and Self-Repairing Genetic Programming Designer for Logic Circuits
Usually, important parameters in the design and implementation of combinational logic circuits are the number of gates, transistors, and the levels used in the design of the circuit. In this regard, various evolutionary paradigms with different competency have recently been introduced. However, while being advantageous, evolutionary paradigms also have some limitations including: a) lack of con...
متن کاملLogic synthesis of multilevel circuits with concurrent error detection
This paper presents a procedure for synthesizing multilevel circuits with concurrent error detection. All errors caused by single stuck-at faults are detected using a parity-check code. The synthesis procedure (implemented in Stanford CRC's TOPS synthesis system) fully automates the design process and reduces the cost of concurrent error detection compared with previous methods. An algorithm fo...
متن کاملIntegration of asynchronous and self-checking multiple-valued current-mode circuits based on dual-rail differential logic
A new multiple-valued current-mode (MVCM) integrated circuit based on dual-rail differential logic, whose currentdriving capability is high at a low supply voltage, is proposed to realize a totally self-checking circuit and an asynchronous-control circuit. Two nMOS transistors with different threshold voltages are used as complementary pass switches in the proposed differential-pair circuit (DP...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IEEE Trans. VLSI Syst.
دوره 8 شماره
صفحات -
تاریخ انتشار 2000