Low-field magnetic separation of monodisperse Fe3O4 nanocrystals.
نویسندگان
چکیده
Magnetic separations at very low magnetic field gradients (<100 tesla per meter) can now be applied to diverse problems, such as point-of-use water purification and the simultaneous separation of complex mixtures. High-surface area and monodisperse magnetite (Fe3O4) nanocrystals (NCs) were shown to respond to low fields in a size-dependent fashion. The particles apparently do not act independently in the separation but rather reversibly aggregate through the resulting high-field gradients present at their surfaces. Using the high specific surface area of Fe3O4 NCs that were 12 nanometers in diameter, we reduced the mass of waste associated with arsenic removal from water by orders of magnitude. Additionally, the size dependence of magnetic separation permitted mixtures of 4- and 12-nanometer-sized Fe3O4 NCs to be separated by the application of different magnetic fields.
منابع مشابه
Direct coprecipitation route to monodisperse dual-functionalized magnetic iron oxide nanocrystals without size selection.
Water-soluble monodisperse superparamagnetic Fe3O4 nanocrystals decorated with two distinct functional groups are prepared in a single-step procedure by injecting iron precursors into a refluxing aqueous solution of a polymer ligand, trithiol-terminated poly(methacrylic acid) (PMAA-PTTM), bearing both carboxylate and thiol functionalities. The ratio of carboxylic acid groups in the polymer-prot...
متن کاملRoom temperature solvent-free synthesis of monodisperse magnetite nanocrystals.
We have successfully demonstrated a facile, solvent-free synthesis of highly crystalline and monodisperse Fe3O4 nanocrystallites at ambient temperature avoiding any heating. Solid state reaction of inorganic Fe(ll) and Fe(ll) salts with NaOH was found to produce highly crystalline Fe3O4 nanoparticles. The reaction, if carried out in the presence of surfactant such as oleic acid-oleylamine adduc...
متن کاملMonodisperse magnetic core/shell microspheres with Pd nanoparticles-incorporated-carbon shells.
This work reports a hard self-template method to synthesize core/shell like Fe3O4@C microparticles, in which the Pd nanocrystals can be alternatively incorporated into the carbon shells. The Fe3O4@polyaniline core/shell microspheres were first synthesized as the precursor by in situ polymerization of aniline onto the surface of the Fe3O4 microspheres. In a subsequent carbonization of the precur...
متن کاملGraphene oxide–magnetite nanocomposite as an efficient and magnetically separable adsorbent for methylene blue removal from aqueous solution
We report a facile method to produce a magnetically separable graphene oxide–magnetite nanocomposite (GO–Fe3O4) and its adsorption performance in methylene blue (MB) removal from aqueous solution. The GO–Fe3O4 nanocomposite was synthesized by a solution-phase self-assembly method including the incorporation of monodisperse Fe3O4 nanoparticles (NPs) and GO in a dimethylformamide/chloroform mixtu...
متن کاملA flexible lab-on-a-chip for the synthesis and magnetic separation of magnetite decorated with gold nanoparticles.
Magnetite decorated with gold nanoparticles (Fe3O4-AuNPs) is a ferrimagnetic material with unprecedented applications in immunosensors, as a contrast agent for imaging diagnosis, and for the photothermal ablation of tumor cells. Here, we show the preparation of controlled amounts of Fe3O4-AuNPs without organic solvents, surfactants, or heat treatment. For this, we have developed a customized na...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Science
دوره 314 5801 شماره
صفحات -
تاریخ انتشار 2006