Group Leaders Optimization Algorithm
نویسندگان
چکیده
We present a new global optimization algorithm in which the influence of the leaders in social groups is used as an inspiration for the evolutionary technique which is designed into a group architecture. To demonstrate the efficiency of the method, a standard suite of single and multi dimensional optimization functions along with the energies and the geometric structures of Lennard-Jones clusters are given as well as the application of the algorithm on quantum circuit design problems. We show that as an improvement over previous methods, the algorithm scales as N 2.5 for the Lennard-Jones clusters of N-particles. In addition, an efficient circuit design is shown for two qubit Grover search algorithm which is a quantum algorithm providing quadratic speedup over the classical counterpart.
منابع مشابه
PARTICLE SWARM-GROUP SEARCH ALGORITHM AND ITS APPLICATION TO SPATIAL STRUCTURAL DESIGN WITH DISCRETE VARIABLES
Based on introducing two optimization algorithms, group search optimization (GSO) algorithm and particle swarm optimization (PSO) algorithm, a new hybrid optimization algorithm which named particle swarm-group search optimization (PS-GSO) algorithm is presented and its application to optimal structural design is analyzed. The PS-GSO is used to investigate the spatial truss structures with discr...
متن کاملEmpirical Study of Unstable
This thesis studies the effect of unstable leaders in Paxos protocol. Paxos algorithm is one of the most popular solutions for distributed consensus, and is often used for building replicated state machines. Safety is guaranteed by Paxos algorithm regardless of various machine and communication failures. However, the liveness is compromised when multiple Paxos leaders exist at the same time. Al...
متن کاملAN IMPROVED INTELLIGENT ALGORITHM BASED ON THE GROUP SEARCH ALGORITHM AND THE ARTIFICIAL FISH SWARM ALGORITHM
This article introduces two swarm intelligent algorithms, a group search optimizer (GSO) and an artificial fish swarm algorithm (AFSA). A single intelligent algorithm always has both merits in its specific formulation and deficiencies due to its inherent limitations. Therefore, we propose a mixture of these algorithms to create a new hybrid optimization algorithm known as the group search-artif...
متن کاملChoosing Leaders for Multi-objective PSO Algorithms Using Differential Evolution
The fast convergence of particle swarm algorithms can become a downside in multi-objective optimization problems when there are many local optimal fronts. In such a situation a multi-objective particle swarm algorithm may get stuck to a local Pareto optimal front. In this paper we propose a new approach in selecting leaders for the particles to follow, which in-turn will guide the algorithm tow...
متن کاملClustering-Based Leaders' Selection in Multi-Objective Particle Swarm Optimisation
Clustering-based Leaders’ Selection (CLS) is a novel approach for leaders selection in multi-objective particle swarm optimisation. Both objective and solution spaces are clustered. An indirect mapping between clusters in both spaces is defined to recognize regions with potentially better solutions. A leaders archive is built which contains representative particles of selected clusters in the o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1004.2242 شماره
صفحات -
تاریخ انتشار 2010