Robust Backstepping Control of Wing Rock Using Disturbance Observer
نویسندگان
چکیده
Wing rock is a highly nonlinear phenomenon when the aircraft suffers undesired roll-dominated oscillatory at high angle of attack (AOA). Considering the strong nonlinear and unsteady aerodynamic characteristics, an uncertain multi-input and multi-output (MIMO) nonlinear wing rock model is studied, and system uncertainties, unsteady aerodynamic disturbances and external disturbances are considered in the design of wing rock control law. To handle the problem of multiple disturbances, a robust control scheme is proposed based on the extended state observer (ESO) and the radial basis function neural network (RBFNN) technique. Considering that the effectiveness of actuators are greatly decreased at high AOA, the input saturation problem is also handled by constructing a corresponding auxiliary system. Based on the improved ESO and the auxiliary system, a robust backstepping control law is proposed for the wing rock control. In addition, the dynamic surface control (DSC) technique is introduced to avoid the tedious computations of time derivatives for the virtual control laws in the backstepping method. The stability of the closed-loop system is guaranteed via rigorously Lyapunov analysis. Finally, simulation results are presented to illustrate the effectiveness of the ESO and the proposed wing rock control approach.
منابع مشابه
Robust MRAC for a Wing Rock Phenomenon in Delta Wing Aircrafts
Wing rock phenomenon is an undesired motion appears in high angles of attack where a rolling in the aircraft in positive and negative roll angles with specified amplitude and frequency is occurred. In this paper two adaptive controllers suggested to control the rolling dynamics under wing rock phenomenon for a delta wing aircraft with presence of disturbance. Disturbance was considered as unmat...
متن کاملRobust Backstepping Control of Induction Motor Drives Using Artificial Neural Networks and Sliding Mode Flux Observers
In this paper, using the three-phase induction motor fifth order model in a stationary twoaxis reference frame with stator current and rotor flux as state variables, a conventional backsteppingcontroller is first designed for speed and rotor flux control of an induction motor drive. Then in orderto make the control system stable and robust against all electromechanical parameter uncertainties a...
متن کاملDesign and Implementation of Discrete Time Observer Based Backstepping Controller for a 2DOF Servomechanism
The two degrees of freedom servomechanism has many applications, including in gimbaled seekers. These mechanisms require closed-loop control to perform properly. In this paper, an observer-based multi-input-multi-output hybrid controller is designed for a two-degree-of-freedom servomechanism. Since in the model presented in this paper, disturbances on the mechanism are considered, so an extende...
متن کاملRobust Position Control of Electro-mechanical Systems
In this work, the robust position control scheme is proposed for the electro-mechanical system using the disturbance observer and backstepping control method. To the external unknown load of the electro-mechanical system, the nonlinear disturbance observer is given to estimate the external unknown load. Combining the output of the developed nonlinear disturbance observer with backstepping techn...
متن کاملControl of Quadrotor Using Sliding Mode Disturbance Observer and Nonlinear Hâ
In this paper, a nonlinear model of the underactuated six degrees of freedom (6 DOF) quadrotor helicopter was derived based on the Newton-Euler formalism. A new nonlinear robust control strategy was proposed to solve the stabilizing and path following problems in presence of external disturbances and parametric uncertainties. The proposed control structure consist of a sliding mode control base...
متن کامل