Iterative Estimation Algorithm of Autoregressive Parameters

نویسندگان

  • Kazys Kazlauskas
  • Jaunius Kazlauskas
چکیده

This paper presents an iterative autoregressive system parameter estimation algorithm in the presence of white observation noise. The algorithm is based on the parameter estimation bias correction approach. We use high order Yule–Walker equations, sequentially estimate the noise variance, and exploit these estimated variances for the bias correction. The improved performance of the proposed algorithm in the presence of white noise is demonstrated via Monte Carlo experiments.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spectrum Estimation by Noise-Compensated Data Extrapolation

High-resolution spectrum estimation techniques have been extensively studied in recent publications. Knowledge of the noise variance is vital for spectrum estimation from noise-corrupted observations. This paper presents the use of noise compensation and data extrapolation for spectrum estimation. We assume that the observed data sequence can be represented by a set of autoregressive parameters...

متن کامل

Data-driven estimation of semiparametric fractional autoregressive models

In this paper data-driven algorithms for tting SEMIFAR models (Beran, 1999) are proposed. The algorithms combine the data-driven estimation of the nonparametric trend and maximum likelihood estimation of the parameters. For selecting the bandwidth, the proposal of Beran and Feng (1999) based on the iterative plug-in idea (Gasser et al., 1991) is used. Asymptotic properties of the proposed algor...

متن کامل

Applying a combined fuzzy systems and GARCH model to adaptively forecast stock market volatility

This paper studies volatility forecasting in the financial stock market. In general, stock market volatility is time-varying and exhibits clustering properties. Thus, this paper presents the results of using a fuzzy system method to analyze clustering in generalized autoregressive conditional heteroskedasticity (GARCH) models. It also uses the adaptive method of recursive least-squares (RLS) to...

متن کامل

Modified Maximum Likelihood Estimation in First-Order Autoregressive Moving Average Models with some Non-Normal Residuals

When modeling time series data using autoregressive-moving average processes, it is a common practice to presume that the residuals are normally distributed. However, sometimes we encounter non-normal residuals and asymmetry of data marginal distribution. Despite widespread use of pure autoregressive processes for modeling non-normal time series, the autoregressive-moving average models have le...

متن کامل

Bilinear Time Series Model for Estimating a Disease Death Rate

We compare new time-series methods for estimating the death rate of an emerging and re-emerging disease and our approach is based on One-Dimensional Integrated Autoregressive Bilinear Time Series Model and Generalized Integrated Autoregressive Bilinear Time Series Model. The parameters of the proposed models are estimated using Newton-Raphson iterative method and statistical properties of the d...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Informatica, Lith. Acad. Sci.

دوره 17  شماره 

صفحات  -

تاریخ انتشار 2006