Free-standing nickel oxide nanoflake arrays: synthesis and application for highly sensitive non-enzymatic glucose sensors.
نویسندگان
چکیده
We report a seed-mediated hydrothermal growth of free-standing nickel hydroxide [Ni(OH)(2)] and nickel oxide (NiO) nanoflake arrays and their implementation as electrodes for non-enzymatic glucose sensors. Ni(OH)(2) nanoflakes were converted into porous NiO nanoflakes upon thermal annealing in air at temperatures of 300 °C or above. NiO nanoflake-arrayed sensors achieve an excellent glucose sensitivity of ∼8500 μA cm(-2) mM(-1) and a low detection limit of 1.2 μM glucose at an applied bias of 0.5 V vs. Ag/AgCl. The fabrication of the nanoflake electrode avoids the use of polymer binders representing additional advantage over the conventional powder based glucose sensors. Furthermore, they show good specificity to glucose in the presence of ascorbic acid, d-lactose and d-fructose.
منابع مشابه
High energy density asymmetric supercapacitors with a nickel oxide nanoflake cathode and a 3D reduced graphene oxide anode.
Here we demonstrate a high energy density asymmetric supercapacitor with nickel oxide nanoflake arrays as the cathode and reduced graphene oxide as the anode. Nickel oxide nanoflake arrays were synthesized on a flexible carbon cloth substrate using a seed-mediated hydrothermal method. The reduced graphene oxide sheets were deposited on three-dimensional (3D) nickel foam by hydrothermal treatmen...
متن کاملUltrathin nickel hydroxidenitrate nanoflakes branched on nanowire arrays for high-rate pseudocapacitive energy storage.
An ultrathin nickel hydroxidenitrate nanoflake-ZnO nanowire hybrid array has been synthesized by a facile low-cost solution route and has demonstrated high-rate energy storage in pseudocapacitor application with remarkable specific capacitance and excellent cycling stability.
متن کاملFacile Synthesis and Electrochemical Performance of Graphene-Modified Cu2O Nanocomposite for Use in Enzyme-Free Glucose Biosensor
Graphene-modified Cu2O nanocomposite was synthesized under facile microwave irradiation of an aqueous solution and has been investigated as an enzyme-free glucose biosensor. Morphology and crystal structure of the graphene-modified Cu2O nanocomposite were investigated by using electron microscopy and X-Ray Diffraction (XRD) analyses. Also, the electrochemical performan...
متن کاملHighly Dispersed NiO Nanoparticles Decorating graphene Nanosheets for Non-enzymatic Glucose Sensor and Biofuel Cell
Nickel oxide-decorated graphene nanosheet (NiO/GNS), as a novel non-enzymatic electrocatalyst for glucose oxidation reaction (GOR), was synthesized through a facile hydrothermal route followed by the heat treatment. The successful synthesis of NiO/GNS was characterized by a series of techniques including XRD, BET, SEM and TEM. Significantly, the NiO/GNS catalyst show excellent catalytic activit...
متن کاملThree-Dimensional Porous Nitrogen-Doped NiO Nanostructures as Highly Sensitive NO2 Sensors
Nickel oxide has been widely used in chemical sensing applications, because it has an excellent p-type semiconducting property with high chemical stability. Here, we present a novel technique of fabricating three-dimensional porous nitrogen-doped nickel oxide nanosheets as a highly sensitive NO₂ sensor. The elaborate nanostructure was prepared by a simple and effective hydrothermal synthesis me...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nanoscale
دوره 4 10 شماره
صفحات -
تاریخ انتشار 2012