Crowdsourcing: Low complexity, Minimax Optimal Algorithms

نویسندگان

  • Thomas Bonald
  • Richard Combes
چکیده

We consider the problem of accurately estimating the reliability of workers based on noisy labels they provide, which is a fundamental question in crowdsourcing. We propose a novel lower bound on the minimax estimation error which applies to any estimation procedure. We further propose Triangular Estimation (TE), an algorithm for estimating the reliability of workers. TE has low complexity, may be implemented in a streaming setting when labels are provided by workers in real time, and does not rely on an iterative procedure. We further prove that TE is minimax optimal and matches our lower bound. We conclude by assessing the performance of TE and other state-of-the-art algorithms on both synthetic and real-world data sets.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Lower bounds on the performance of polynomial-time algorithms for sparse linear regression

Under a standard assumption in complexity theory (NP 6⊂ P/poly), we demonstrate a gap between the minimax prediction risk for sparse linear regression that can be achieved by polynomial-time algorithms, and that achieved by optimal algorithms. In particular, when the design matrix is ill-conditioned, the minimax prediction loss achievable by polynomial-time algorithms can be substantially great...

متن کامل

Globally Optimal Crowdsourcing Quality Management

We study crowdsourcing quality management, that is, given worker responses to a set of tasks, our goal is to jointly estimate the true answers for the tasks, as well as the quality of the workers. Prior work on this problem relies primarily on applying ExpectationMaximization (EM) on the underlying maximum likelihood problem to estimate true answers as well as worker quality. Unfortunately, EM ...

متن کامل

Stochastic Variance-reduced Gradient Descent for Low-rank Matrix Recovery from Linear Measurements

We study the problem of estimating low-rank matrices from linear measurements (a.k.a., matrix sensing) through nonconvex optimization. We propose an efficient stochastic variance reduced gradient descent algorithm to solve a nonconvex optimization problem of matrix sensing. Our algorithm is applicable to both noisy and noiseless settings. In the case with noisy observations, we prove that our a...

متن کامل

Regularized Minimax Conditional Entropy for Crowdsourcing

There is a rapidly increasing interest in crowdsourcing for data labeling. By crowdsourcing, a large number of labels can be often quickly gathered at low cost. However, the labels provided by the crowdsourcing workers are usually not of high quality. In this paper, we propose a minimax conditional entropy principle to infer ground truth from noisy crowdsourced labels. Under this principle, we ...

متن کامل

The Design of Low Complexity Two-channel Lattice- Structure Perf'ect-rexonstruction Filter Banks Using Genetic Algorithms

This paper considers the design of reduced complexity 2 band QMF filter banks. In order to ensure perfect reconstruction, a lattice architecture has been adopted. Genetic algorithms are used to search for an optimal set of coefficients comprising simple sums of signed power of two terms. This allows the entire filter bank to be implemented using only additions and a single multiplicative scalin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1606.00226  شماره 

صفحات  -

تاریخ انتشار 2016