Vibrational mode and collision energy effects on reaction of H2CO+ with C2H2: charge state competition and the role of Franck-Condon factors in endoergic charge transfer.

نویسندگان

  • Jianbo Liu
  • Brian Van Devener
  • Scott L Anderson
چکیده

The effects of collision energy (E(col)) and six different H(2)CO(+) vibrational states on the title reaction have been studied over the center-of-mass E(col) range from 0.1 to 2.6 eV, including measurements of product ion recoil velocity distributions. Ab initio and Rice-Ramsperger-Kassel-Marcus calculations were used to examine the properties of complexes and transition states that might be important in mediating the reaction. Reaction is largely direct, despite the presence of multiple deep wells on the potential surface. Five product channels are observed, with a total reaction cross section at the collision limit. The competition among the major H(2) (+) transfer, hydrogen transfer, and proton transfer channels is strongly affected by E(col) and H(2)CO(+) vibrational excitation, providing insight into the factors that control competition and charge state "unmixing" during product separation. One of the more interesting results is that endoergic charge transfer appears to be controlled by Franck-Condon factors, implying that it occurs at large inter-reactant separations, contrary to the expectation that endoergic reactions should require intimate collisions to drive the necessary energy conversion.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Vibrational mode and collision energy effects on reaction of H2CO+ with C2D4.

We report the effects of collision energy (Ecol) and five different H2CO+ vibrational modes on the reaction of H2CO+ with C2D4 over the center-of-mass E(col) range from 0.1 to 2.1 eV. Properties of various complexes and transition states were also examined computationally. Seven product channels are observed. Charge transfer (CT) has the largest cross section over the entire energy range, subst...

متن کامل

Reaction dynamics of OH(Σ) + C2H2 studied with crossed beams and density functional theory calculations

The reactions between OH(Σ) and C2H2 have been studied using crossed ion and molecular beams and density functional theory (DFT) calculations. Both charge transfer and proton transfer channels are observed. Products formed by carbon-carbon bond cleavage analogous to those formed in the isoelectronic O(P) + C2H2 reaction, e.g., CH2 + HCO, are not observed. The center of mass flux distributions o...

متن کامل

Direct dynamics study of energy transfer and collision-induced dissociation: Effects of impact energy, geometry, and reactant vibrational mode

Quasiclassical, direct dynamics trajectories, calculated at the B3LYP/6-31G** level of the theory, have been used to study the energy transfer dynamics and collision-induced dissociation ~CID! of formaldehyde cation in collisions with Ne. Effects of varying collision energy were probed for ground state H2CO , and H2CO 1 with excitation in three different vibrational modes: n6 1 ~in-plane CH2 ro...

متن کامل

به کاربردن تقریب دو حالته در تولید هیدروژن با فرود آمدن پروتون بر روی پوزیترونیوم

Although there is no experimental data available for antihydrogen formation following antiprotons impact on positroium atoms, as a charge transfer reaction, at incident energies which are suitable for antimatter high-precision spectroscopic studies, measurements were carried out for its charge-conjugate reaction i. e. hydrogen formation, by protons impact on positronium. In this study, a two-st...

متن کامل

روش جفت‌شدگی نزدیک دومرکزی در فرآیند انتقال بار

In the present work, the transition matrix elements as well as differential and total scattering cross-sections for positronium formation in Positron-Hydrogen atom collision and hydrogen formation in Positronium-Hydrogen ion collision, through the charge transfer channel by Two-Centre Close-Coupling method up to a first order approximation have been calculated. The charge transfer collision is ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of chemical physics

دوره 123 20  شماره 

صفحات  -

تاریخ انتشار 2005