SIFTER-T: a scalable and optimized framework for the SIFTER phylogenomic method of probabilistic protein domain annotation.

نویسندگان

  • Danillo C Almeida-e-Silva
  • Ricardo Z N Vêncio
چکیده

Statistical Inference of Function Through Evolutionary Relationships (SIFTER) is a powerful computational platform for probabilistic protein domain annotation. Nevertheless, SIFTER is not widely used, likely due to usability and scalability issues. Here we present SIFTER-T (SIFTER Throughput-optimized), a substantial improvement over SIFTER's original proof-of-principle implementation. SIFTER-T is optimized for better performance, allowing it to be used at the genome-wide scale. Compared to SIFTER 2.0, SIFTER-T achieved an 87-fold performance improvement using published test data sets for the known annotations recovering module and a 72.3% speed increase for the gene tree generation module in quad-core machines, as well as a major decrease in memory usage during the realignment phase. Memory optimization allowed an expanded set of proteins to be handled by SIFTER's probabilistic method. The improvement in performance and automation that we achieved allowed us to build a web server to bring the power of Bayesian phylogenomic inference to the genomics community. SIFTER-T and its online interface are freely available under GNU license at http://labpib.fmrp.usp.br/methods/SIFTER-t/ and https://github.com/dcasbioinfo/SIFTER-t.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Protein Molecular Function Prediction by Bayesian Phylogenomics

We present a statistical graphical model to infer specific molecular function for unannotated protein sequences using homology. Based on phylogenomic principles, SIFTER (Statistical Inference of Function Through Evolutionary Relationships) accurately predicts molecular function for members of a protein family given a reconciled phylogeny and available function annotations, even when the data ar...

متن کامل

Genome-scale phylogenetic function annotation of large and diverse protein families.

The Statistical Inference of Function Through Evolutionary Relationships (SIFTER) framework uses a statistical graphical model that applies phylogenetic principles to automate precise protein function prediction. Here we present a revised approach (SIFTER version 2.0) that enables annotations on a genomic scale. SIFTER 2.0 produces equivalently precise predictions compared to the earlier versio...

متن کامل

SIFTER search: a web server for accurate phylogeny-based protein function prediction

We are awash in proteins discovered through high-throughput sequencing projects. As only a minuscule fraction of these have been experimentally characterized, computational methods are widely used for automated annotation. Here, we introduce a user-friendly web interface for accurate protein function prediction using the SIFTER algorithm. SIFTER is a state-of-the-art sequence-based gene molecul...

متن کامل

Phylogenetic molecular function annotation.

It is now easier to discover thousands of protein sequences in a new microbial genome than it is to biochemically characterize the specific activity of a single protein of unknown function. The molecular functions of protein sequences have typically been predicted using homology-based computational methods, which rely on the principle that homologous proteins share a similar function. However, ...

متن کامل

Mapping the Conformation Space of Wildtype and Mutant H-Ras with a Memetic, Cellular, and Multiscale Evolutionary Algorithm

An important goal in molecular biology is to understand functional changes upon single-point mutations in proteins. Doing so through a detailed characterization of structure spaces and underlying energy landscapes is desirable but continues to challenge methods based on Molecular Dynamics. In this paper we propose a novel algorithm, SIfTER, which is based instead on stochastic optimization to c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • BioTechniques

دوره 58 3  شماره 

صفحات  -

تاریخ انتشار 2015