Investigation into the Physiological Significance of the Phytohormone Abscisic Acid in Perkinsus marinus, an Oyster Parasite Harboring a Nonphotosynthetic Plastid
نویسندگان
چکیده
Some organisms have retained plastids even after they have lost the ability to photosynthesize. Several studies of nonphotosynthetic plastids in apicomplexan parasites have shown that the isopentenyl pyrophosphate biosynthesis pathway in the organelle is essential for their survival. A phytohormone, abscisic acid, one of several compounds biosynthesized from isopentenyl pyrophosphate, regulates the parasite cell cycle. Thus, it is possible that the phytohormone is universally crucial, even in nonphotosynthetic plastids. Here, we examined this possibility using the oyster parasite Perkinsus marinus, which is a plastid-harboring cousin of apicomplexan parasites and has independently lost photosynthetic ability. Fluridone, an inhibitor of abscisic acid biosynthesis, blocked parasite growth and induced cell clustering. Nevertheless, abscisic acid and its intermediate carotenoids did not affect parasite growth or rescue the parasite from inhibition. Moreover, abscisic acid was not detected from the parasite using liquid chromatography mass spectrometry. Our findings show that abscisic acid does not play any significant roles in P. marinus.
منابع مشابه
The effects of several common anthropogenic contaminants on proliferation of the parasitic oyster pathogen Perkinsus marinus.
Estuarine contaminants have varying effects on estuarine inhabitants and host-parasite interactions. Some field collected contaminant mixtures have been shown to increase oyster susceptibility to parasitism by Perkinsus marinus, but little is known about contaminant effects on the parasite itself. This study examined the effects of ammonium, nitrate, phosphate, fluoranthene, phenanthrene and a ...
متن کاملReal-time PCR investigation of parasite ecology: in situ determination of oyster parasite Perkinsus marinus transmission dynamics in lower Chesapeake Bay.
Perkinsus marinus is a severe pathogen of the oyster Crassostrea virginica on the East Coast of the United States. Transmission dynamics of this parasite were investigated in situ for 2 consecutive years (May through October) at 2 lower Chesapeake Bay sites. Compared to previous studies where seasonal infection patterns in oysters were measured, this study also provided parasite water column ab...
متن کاملA galectin of unique domain organization from hemocytes of the Eastern oyster (Crassostrea virginica) is a receptor for the protistan parasite Perkinsus marinus.
Invertebrates display effective innate immune responses for defense against microbial infection. However, the protozoan parasite Perkinsus marinus causes Dermo disease in the eastern oyster Crassostrea virginica and is responsible for catastrophic damage to shellfisheries and the estuarine environment in North America. The infection mechanisms remain unclear, but it is likely that, while filter...
متن کاملPhospholipid biosynthesis in the oyster protozoan parasite, Perkinsus marinus.
Perkinsus marinus is a protozoan parasite that causes high mortality in its commercially and ecologically important host, the Eastern oyster Crassostrea virginica. In order to understand the host-parasite relationship in lipid metabolism, the ability of P. marinus to synthesize phospholipids from polar headgroup precursors was investigated. Pulse/chase experiments were conducted using radiolabl...
متن کاملIdentification of MMV Malaria Box Inhibitors of Perkinsus marinus Using an ATP-Based Bioluminescence Assay
"Dermo" disease caused by the protozoan parasite Perkinsus marinus (Perkinsozoa) is one of the main obstacles to the restoration of oyster populations in the USA. Perkinsus spp. are also a concern worldwide because there are limited approaches to intervention against the disease. Based on the phylogenetic affinity between the Perkinsozoa and Apicomplexa, we exposed Perkinsus trophozoites to the...
متن کامل