State-of-the-art methodologies for the discovery and characterization of DNA G-quadruplex binders.

نویسندگان

  • Bruno Pagano
  • Sandro Cosconati
  • Valerie Gabelica
  • Luigi Petraccone
  • Stefano De Tito
  • Luciana Marinelli
  • Valeria La Pietra
  • Francesco Saverio di Leva
  • Ilaria Lauri
  • Roberta Trotta
  • Ettore Novellino
  • Concetta Giancola
  • Antonio Randazzo
چکیده

Nowadays, the molecular basis of interaction between low molecular weight compounds and biological macromolecules is the subject of numerous investigations aimed at the rational design of molecules with specific therapeutic applications. In the last decades, it has been demonstrated that DNA quadruplexes play a critical role in several biological processes both at telomeric and gene promoting levels thus providing a great stride in the discovery of ligands able to interact with such a biologically relevant DNA conformation. So far, a number of experimental and computational approaches have been successfully employed in order to identify new ligands and to characterize their binding to the DNA. The main focus of this review is the description of these methodologies, placing a particular emphasis on computational methods, isothermal titration calorimetry (ITC), mass spectrometry (MS), nuclear magnetic resonance (NMR), circular dichroism (CD) and fluorescence spectroscopies.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

In silico screening of G-Quadruplex Structures in Wilms tumor 1 Gene Promoter

Introduction: X-ray diffraction studies have revealed that guanines in a DNA stands may be arranged in quartet and form a structure called G-quadruplexs. Bioinformatics studies suggested the formation of G-quadruplex structure in human crucial genes, including Wilms tumor 1 (WT1). The aim of this study was to in silico analysis of the guanine-rich sequence in the promoter region of the WT1 gene...

متن کامل

Use of a Designed Peptide Library to Screen for Binders to a Particular DNA G-Quadruplex Sequence

We demonstrated a method to screen for binders to a particular G-quadruplex sequence using easily designed short peptides consisting of naturally occurring amino acids and mining of binding data using statistical methods such as hierarchical clustering analysis (HCA). Despite the small size of the library used in this study, candidates of specific binders were identified. In addition, a selecte...

متن کامل

Structure-based virtual screening of novel natural alkaloid derivatives as potential binders of h-telo and c-myc DNA G-quadruplex conformations.

Several ligands can bind to the non-canonical G-quadruplex DNA structures thereby stabilizing them. These molecules can act as effective anticancer agents by stabilizing the telomeric regions of DNA or by regulating oncogene expression. In order to better interact with the quartets of G-quadruplex structures, G-binders are generally characterized by a large aromatic core involved in π-π stackin...

متن کامل

Platinum(II)-triarylpyridines complexes with electropositive pendants as efficient G-quadruplex binders.

Herein we reported three new platinum(ii)-triarylpyridines complexes with peralkylated ammonium pendants that strongly stabilize G-quadruplex DNA.

متن کامل

Chemistry and biology of DNA-binding small molecules

Regulation of the transcription machinery is one of the many ways to achieve control of gene expression. This has been done either at the transcription initiation stage or at the elongation stage. Different methodologies are known to inhibit transcription initiation via targeting of double-stranded (ds) DNA by: (i) synthetic oligonucleotides, (ii) ds-DNA-specific, sequenceselective minor-groove...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Current pharmaceutical design

دوره 18 14  شماره 

صفحات  -

تاریخ انتشار 2012