On the efficient use of Givens rotations in SVD-based subspace tracking algorithms

نویسندگان

  • Philippe A. Pango
  • Benoît Champagne
چکیده

In this paper, the issue of the efficient use of Givens rotations in SVD-based QR Jacobi-type subspace tracking algorithms is addressed. By relaxing the constraint of upper triangularity on the singular value matrix, we show how even fewer Givens rotations can achieve a better diagonalization and provide more accurate singular values. Then, we investigate the efficient use of Givens rotations as a vector rotation tool. The cancellation of cross-terms is presented as an efficient signal/noise separation technique which guarantees a better updating of the subspaces basis. Regarding the choice between inner and outer rotations, we properly use the permutation properties of Givens rotations to maintain the decreasing ordering of the singular values throughout the updating process and analyze the consequences on the tracking performance of QR Jacobi-type algorithms. Finally, based on the developed theory, we propose two efficient subspace tracking algorithms which outperform existing QR Jacobi-type algorithms. Comparative simulation experiments validate the concepts. ( 1999 Elsevier Science B.V. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Eecient Use of Givens Rotations in Svd-based Subspace Tracking Algorithms ?

In this paper, the issue of the eecient use of Givens rotations in SVD-based QR Jacobi-type subspace tracking algorithms is adressed. By relaxing the constraint of upper-triangularity on the singular value matrix, we show how even fewer Givens rotations can achieve a better diagonalization and provide more accurate singular values. Then, we investigate the eecient use of Givens rotations as a v...

متن کامل

Accurate subspace tracking algorithms based on cross-space properties

In this paper, we analyse the issue of e ciently using Givens rotations to perform a more accurate SVD-based subspace tracking. We propose an alternative type of decomposition which allows a more versatile use of Givens rotations. We also show the direct e ect of the latter on the tracking error, and develop a cross-terms cancellation concept which leads to a class of high performance algorithm...

متن کامل

Accurate Subspace Tracking Algorithms Based Oncross - Space

In this paper, we analyse the issue of eeciently using Givens rotations to perform a more accurate SVD-based subspace tracking. We propose an alternative type of decomposition which allows a more versatile use of Givens rotations. We also show the direct eeect of the latter on the tracking error, and develop a cross-terms cancellation concept which leads to a class of high performance algorithm...

متن کامل

A new family of EVD tracking algorithms using Givens rotations

In this work, we derive new algorithms for tracking the eigenvalue decomposition (EVD) of a time-varying data co-variance matrix. These algorithms have parallel structures, low operation counts and good convergence behavior. Their main feature is the use of Givens rotations to update the eigenvector estimates. As a result, orthonormality of the latter can be maintained at all time, which is cri...

متن کامل

Plane rotation-based EVD updating schemes for efficient subspace tracking

We present new algorithms based on plane rotations for tracking the eigenvalue decomposition (EVD) of a time-varying data covariance matrix. These algorithms directly produce eigenvectors in orthonormal form and are well suited for the application of subspace methods to nonstationary data. After recasting EVD tracking as a simplified rank-one EVD update problem, computationally efficient soluti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Signal Processing

دوره 74  شماره 

صفحات  -

تاریخ انتشار 1999