Circadian rhythms in Neurospora crassa: interactions between clock mutations.

نویسندگان

  • P L Lakin-Thomas
  • S Brody
چکیده

Mutations at four loci in Neurospora crassa that alter the period of the circadian rhythm have been used to construct a series of double mutant strains in order to detect interactions between these mutations. Strains carrying mutations at three of these loci have altered periods on minimal media: prd-1, several alleles at the olir (oligomycin resistance) locus and four alleles at the frq locus. A mutation at the fourth locus, cel, which results in a defect in fatty acid synthesis, also leads to lengthening of the period when the medium is supplemented with linoleic acid (18:2). The cel mutation was crossed into strains carrying the frq, prd-1 and olir mutations, and the periods of the double mutant strains with and without 18:2 supplementation were determined. In addition, data from the literature for other combinations of loci and/or chemical effects on the period have been reanalyzed.--It was found that both prd-1 and olir are epistatic to the effects of 18:2 on cel; in the series of cel frq double mutant strains, the period-lengthening effect of 18:2 is inversely proportional to the period of the frq parent, indicating an interaction between frq and cel; period effects reported in the literature can be described as changes by a fixed ratio or percentage of the period rather than by a fixed number of hours, and the data, therefore, can support a multiplicative as well as an additive model.--Several biochemical interpretations of these interactions are discussed, based on simple chemical kinetics, enzyme inhibition kinetics and the control of flux through metabolic pathways.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Circadian rhythms in Neurospora crassa and other filamentous fungi.

Circadian clocks are endogenous cellular timekeepers that control a wide variety of daily physiological and molecular rhythms in most eukaryotic and some prokaryotic organisms (31, 116). These rhythmic events allow organisms to best adapt to the natural environment on earth (88). All circadian rhythms share three basic properties. First, circadian rhythms persist under constant conditions with ...

متن کامل

Temperature-Sensitive and Circadian Oscillators of Neurospora crassa Share Components

In Neurospora crassa, the interactions between products of the frequency (frq), frequency-interacting RNA helicase (frh), white collar-1 (wc-1), and white collar-2 (wc-2) genes establish a molecular circadian clockwork, called the FRQ-WC-Oscillator (FWO), which is required for the generation of molecular and overt circadian rhythmicity. In strains carrying nonfunctional frq alleles, circadian r...

متن کامل

A fungus among us: the Neurospora crassa circadian system.

Neurospora crassa is the only molecular genetic model system for circadian rhythms research in the fungi. Its strengths as a model organism lie in its relative simplicity--compared to photosynthesizing and vertebrate organisms, it is a stripped-down version of life. It forms syncitial hyphae, propagates and reproduces, and the circadian clock is manifest in numerous processes therein. As with o...

متن کامل

Epistatic and synergistic interactions between circadian clock mutations in Neurospora crassa.

We identified a series of epistatic and synergistic interactions among the circadian clock mutations of Neurospora crassa that indicate possible physical interactions among the various clock components encoded by these genes. The period-6 (prd-6) mutation, a short-period temperature-sensitive clock mutation, is epistatic to both the prd-2 and prd-3 mutations. The prd-2 and prd-3 long-period mut...

متن کامل

Suppressing the Neurospora crassa circadian clock while maintaining light responsiveness in continuous stirred tank reactors

Neurospora crassa has been utilized as a model organism for studying biological, regulatory, and circadian rhythms for over 50 years. These circadian cycles are driven at the molecular level by gene transcription events to prepare for environmental changes. N. crassa is typically found on woody biomass and is commonly studied on agar-containing medium which mimics its natural environment. We re...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Genetics

دوره 109 1  شماره 

صفحات  -

تاریخ انتشار 1985