Plant sterols in "rafts": a better way to regulate membrane thermal shocks.

نویسندگان

  • Johannes G Beck
  • Damien Mathieu
  • Cécile Loudet
  • Sébastien Buchoux
  • Erick J Dufourc
چکیده

Specialized lipid domains (rafts) that are generally enriched in sterols and sphingolipids, are most likely present in cell membranes of animals, plants and fungi. While cholesterol and ergosterol are predominant in vertebrates and fungi, plants possess complex sterol profiles, dominated by sitosterol and stigmasterol in Arabidopsis thaliana. Fully hydrated model membranes of composition approaching those found in rafts of mammals, fungi and plants were investigated by means of solid-state 2H-NMR, using deuterated dipalmitoylphosphatidylcholine (2H(62)-DPPC). The dynamics of such membranes was determined through measuring of membrane ordering or disordering properties. The presence of the liquid-ordered, lo, phase, which may be an indicator of rigid sterol-sphingolipid domains, was detected in all binary or ternary mixtures of all sterols investigated. Of great interest, the dynamics of ternary mixtures mimicking rafts in plants (phytosterol/glucosylcerebroside/DPPC), showed a lesser temperature sensitivity to thermal shocks, on comparing to systems mimicking rafts in mammals and fungi. This effect was particularly marked with sitosterol. The presence of an ethyl group branched on the alkyl chain of sitosterol and stigmasterol is proposed as reinforcing the membrane cohesion by additional attractive van der Waals interactions with the alkyl chains of sphingolipids and phospholipids. As a side result, the elevated resolution of NMR spectra in the presence of sitosterol also suggests domains of smaller size than with other sterols. Finally, the role of phytosterols in maintaining plant membranes in a state of dynamics less sensitive to temperature shocks is discussed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Lipid Raft, Regulator of Plasmodesmal Callose Homeostasis

Abstract: The specialized plasma membrane microdomains known as lipid rafts are enriched by sterols and sphingolipids. Lipid rafts facilitate cellular signal transduction by controlling the assembly of signaling molecules and membrane protein trafficking. Another specialized compartment of plant cells, the plasmodesmata (PD), which regulates the symplasmic intercellular movement of certain mole...

متن کامل

Arabidopsis mutants reveal multiple roles for sterols in plant development.

The molecular genetic, and biochemical analysis of sterol-deficient mutants in Arabidopsis strongly suggests an essential role for sterols in regulating multiple events in plant development, independent of their conversion to brassinosteroids (BRs). Embryogenesis, cell elongation, vascular differentiation, and hormone signaling all are affected by the alteration of sterol levels, but the molecu...

متن کامل

Arabidopsis Mutants Reveal Multiple Roles for Sterols in Plant Development

The molecular genetic, and biochemical analysis of sterol-deficient mutants in Arabidopsis strongly suggests an essential role for sterols in regulating multiple events in plant development, independent of their conversion to brassinosteroids (BRs). Embryogenesis, cell elongation, vascular differentiation, and hormone signaling all are affected by the alteration of sterol levels, but the molecu...

متن کامل

Proving Lipid Rafts Exist: Membrane Domains in the Prokaryote Borrelia burgdorferi Have the Same Properties as Eukaryotic Lipid Rafts

Lipid rafts in eukaryotic cells are sphingolipid and cholesterol-rich, ordered membrane regions that have been postulated to play roles in many membrane functions, including infection. We previously demonstrated the existence of cholesterol-lipid-rich domains in membranes of the prokaryote, B. burgdorferi, the causative agent of Lyme disease [LaRocca et al. (2010) Cell Host & Microbe 8, 331-342...

متن کامل

Analysis of the arabidopsis dry2/sqe1-5 mutant suggests a role for sterols in signaling.

Sterols play multi-faceted roles in all eukaryotes. In plants, there are mounting evidences pointing to sterols, other than BRs, can act as signaling molecules. The Arabidopsis dry2/sqe1-5 mutant has multiple developmental defects caused by a point mutation in the SQE1 gene that generates a hypomorphic allele. SQE1 encodes a squalene epoxidase, which converts squalene into 2,3-oxidosqualene the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • FASEB journal : official publication of the Federation of American Societies for Experimental Biology

دوره 21 8  شماره 

صفحات  -

تاریخ انتشار 2007