Strategies To Increase the Thermal Stability of Truly Biomimetic Hydrogels: Combining Hydrophobicity and Directed Hydrogen Bonding
نویسندگان
چکیده
Enhancing the thermal stability of proteins is an important task for protein engineering. There are several ways to increase the thermal stability of proteins in biology, such as greater hydrophobic interactions, increased helical content, decreased occurrence of thermolabile residues, or stable hydrogen bonds. Here, we describe a well-defined polymer based on β-helical polyisocyanotripeptides (TriPIC) that uses biological approaches, including hydrogen bonding and hydrophobic interactions for its exceptional thermal stability in aqueous solutions. The multiple hydrogen bonding arrays along the polymer backbone shield the hydrophobic core from water. Variable temperature CD and FTIR studies indicate that, on heating, a better packed polymer conformation further stiffens the backbone. Driven by hydrophobic interactions, TriPIC solutions give fully reversible hydrogels that can withstand high temperatures (80 °C) for extended times. Cryo-scanning electron microscopy (cryo-SEM), small-angle X-ray scattering (SAXS), and thorough rheological analysis show that the hydrogel has a bundled architecture, which gives rise to strain stiffening effects on deformation of the gel, analogous to many biological hydrogels.
منابع مشابه
Cyclohexane bis-urea compounds for the gelation of water and aqueous solutions.
A new class of efficient hydrogelators has been developed by a simple modification of the peripheral substituents of cyclohexane bis-urea organogelators with hydrophilic hydroxy or amino functionalities. These bis-urea hydrogelators were synthesised in two or three steps using an alternative procedure to the common isocyanate method. Gelation was obtained with organic solvents, water and strong...
متن کاملPhoto-active collagen systems with controlled triple helix architecture.
The design of photo-active collagen systems is presented as a basis for establishing biomimetic materials with varied network architecture and programmable macroscopic properties. Following in-house isolation of type I collagen, reaction with vinyl-bearing compounds of varied backbone rigidity, i.e. 4-vinylbenzyl chloride (4VBC) and glycidyl methacrylate (GMA), was carried out. TNBS colorimetri...
متن کاملIsomerism and Hydrogen Bonding in the Cis-enol Forms of 1-(n-pyridyl)butane-1,3-diones: A Theoretical Study
Molecular structure, isomerism, conformational stability and intramolecular hydrogen bonding (IHB) of cis-enol forms of 1-(n-pyridyl)butane-1,3-diones (nPBD) (n = 2, 3, or 4) have been investigated by means of density functional theory (DFT) calculations. Energy differences for all possible nPBD cis-enol forms of isomers with respect to the most stable form of the correspondin...
متن کاملProtein thermal stability, hydrogen bonds, and ion pairs.
Researchers in both academia and industry have expressed strong interest in comprehending the mechanisms responsible for enhancing the thermostability of proteins. Many and different structural principles have been postulated for the increased stability. Here, 16 families of proteins with different thermal stability were theoretically examined by comparing their respective fractional polar atom...
متن کاملProtein-protein interactions affect alpha helix stability in crowded environments.
The dense, heterogeneous cellular environment is known to affect protein stability through interactions with other biomacromolecules. The effect of excluded volume due to these biomolecules, also known as crowding agents, on a protein of interest, or test protein, has long been known to increase the stability of a test protein. Recently, it has been recognized that attractive protein-crowder in...
متن کامل