Compacting and correcting Trinity and Oases RNA-Seq de novo assemblies
نویسندگان
چکیده
BACKGROUND De novo transcriptome assembly of short reads is now a common step in expression analysis of organisms lacking a reference genome sequence. Several software packages are available to perform this task. Even if their results are of good quality it is still possible to improve them in several ways including redundancy reduction or error correction. Trinity and Oases are two commonly used de novo transcriptome assemblers. The contig sets they produce are of good quality. Still, their compaction (number of contigs needed to represent the transcriptome) and their quality (chimera and nucleotide error rates) can be improved. RESULTS We built a de novo RNA-Seq Assembly Pipeline (DRAP) which wraps these two assemblers (Trinity and Oases) in order to improve their results regarding the above-mentioned criteria. DRAP reduces from 1.3 to 15 fold the number of resulting contigs of the assemblies depending on the read set and the assembler used. This article presents seven assembly comparisons showing in some cases drastic improvements when using DRAP. DRAP does not significantly impair assembly quality metrics such are read realignment rate or protein reconstruction counts. CONCLUSION Transcriptome assembly is a challenging computational task even if good solutions are already available to end-users, these solutions can still be improved while conserving the overall representation and quality of the assembly. The de novo RNA-Seq Assembly Pipeline (DRAP) is an easy to use software package to produce compact and corrected transcript set. DRAP is free, open-source and available under GPL V3 license at http://www.sigenae.org/drap.
منابع مشابه
Oases: robust de novo RNA-seq assembly across the dynamic range of expression levels
MOTIVATION High-throughput sequencing has made the analysis of new model organisms more affordable. Although assembling a new genome can still be costly and difficult, it is possible to use RNA-seq to sequence mRNA. In the absence of a known genome, it is necessary to assemble these sequences de novo, taking into account possible alternative isoforms and the dynamic range of expression values. ...
متن کاملEBARDenovo: highly accurate de novo assembly of RNA-Seq with efficient chimera-detection
MOTIVATION High-accuracy de novo assembly of the short sequencing reads from RNA-Seq technology is very challenging. We introduce a de novo assembly algorithm, EBARDenovo, which stands for Extension, Bridging And Repeat-sensing Denovo. This algorithm uses an efficient chimera-detection function to abrogate the effect of aberrant chimeric reads in RNA-Seq data. RESULTS EBARDenovo resolves the ...
متن کاملSelecting Superior De Novo Transcriptome Assemblies: Lessons Learned by Leveraging the Best Plant Genome
Whereas de novo assemblies of RNA-Seq data are being published for a growing number of species across the tree of life, there are currently no broadly accepted methods for evaluating such assemblies. Here we present a detailed comparison of 99 transcriptome assemblies, generated with 6 de novo assemblers including CLC, Trinity, SOAP, Oases, ABySS and NextGENe. Controlled analyses of de novo ass...
متن کاملBRANCH: boosting RNA-Seq assemblies with partial or related genomic sequences
MOTIVATION De novo transcriptome assemblies of RNA-Seq data are important for genomics applications of unsequenced organisms. Owing to the complexity and often incomplete representation of transcripts in sequencing libraries, the assembly of high-quality transcriptomes can be challenging. However, with the rapidly growing number of sequenced genomes, it is now feasible to improve RNA-Seq assemb...
متن کاملClustering of Short Read Sequences for de novo Transcriptome Assembly
Given the importance of transcriptome analysis in various biological studies and considering thevast amount of whole transcriptome sequencing data, it seems necessary to develop analgorithm to assemble transcriptome data. In this study we propose an algorithm fortranscriptome assembly in the absence of a reference genome. First, the contiguous sequencesare generated using de Bruijn graph with d...
متن کامل