Shiga toxin binding to globotriaosyl ceramide induces intracellular signals that mediate cytoskeleton remodeling in human renal carcinoma-derived cells.

نویسندگان

  • Hisami Takenouchi
  • Nobutaka Kiyokawa
  • Tomoko Taguchi
  • Jun Matsui
  • Yohko U Katagiri
  • Hajime Okita
  • Kenji Okuda
  • Junichiro Fujimoto
چکیده

Shiga toxin is a bacterial toxin consisting of A and B subunits. Generally, the essential cytotoxicity of the toxin is thought to be mediated by the A subunit, which possesses RNA cleavage activity and thus induces protein synthesis inhibition. We previously reported, however, that the binding of the Shiga toxin 1-B subunit to globotriaosyl ceramide, a functional receptor for Shiga toxin, induces intracellular signals in a manner that is dependent on glycolipid-enriched membrane domains, or lipid rafts. Although the precise role of this signaling mechanism is not known, here we report that Shiga-toxin-mediated intracellular signals induce cytoskeleton remodeling in ACHN cells derived from renal tubular epithelial carcinoma. Using confocal laser scanning microscopy, we observed that Shiga toxin 1-B treatment induces morphological changes in ACHN cells in a time-dependent manner. In addition, the morphological changes were accompanied by the redistribution of a number of proteins, including actin, ezrin, CD44, vimentin, cytokeratin, paxillin, FAK, and alpha- and gamma-tubulins, all of which are involved in cytoskeletal organization. The transient phosphorylation of ezrin and paxillin was also observed during the course of protein redistribution. Experiments using inhibitors for a variety of kinases suggested the involvement of lipid rafts, Src family protein kinase, PI 3-kinase, and RHO-associated kinase in Shiga toxin 1-B-induced ezrin phosphorylation. Shiga toxin 1-B-induced cytoskeletal remodeling should provide an in vitro model that can be used to increase our understanding of the pathogenesis of Shiga-toxin-mediated cell injury and the role of lipid-raft-mediated cell signaling in cytoskeletal remodeling.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Serum amyloid P component binding to Shiga toxin 2 requires both a subunit and B pentamer.

Solid-phase binding, competitive binding, and cytotoxicity neutralization assays indicate that the B pentamer and A subunit both contribute to human serum amyloid P (HuSAP) component binding to Stx2. A polyvalent globotriaosyl-ceramide receptor analog, Daisy, did not competitively inhibit HuSAP binding, implying that the two ligands bind to different Stx2 domains.

متن کامل

Induction by sphingomyelinase of shiga toxin receptor and shiga toxin 2 sensitivity in human microvascular endothelial cells.

Shiga toxin-producing enterohemorrhagic Escherichia coli is the major cause of acute renal failure in young children. The interaction of Shiga toxins 1 and 2 (Stx1 and Stx2) with endothelial cells is an important step in the renal coagulation and thrombosis observed in hemolytic uremic syndrome. Previous studies have shown that bacterial lipopolysaccharide and host cytokines slowly sensitize en...

متن کامل

Microvesicle Involvement in Shiga Toxin-Associated Infection

Shiga toxin is the main virulence factor of enterohemorrhagic Escherichia coli, a non-invasive pathogen that releases virulence factors in the intestine, causing hemorrhagic colitis and, in severe cases, hemolytic uremic syndrome (HUS). HUS manifests with acute renal failure, hemolytic anemia and thrombocytopenia. Shiga toxin induces endothelial cell damage leading to platelet deposition in thr...

متن کامل

Microcystin-LR induces ceramide to regulate PP2A and destabilize cytoskeleton in HEK293 cells.

Microcystin-LR (MCLR) is one of the most common and most toxic members of the microcystins, which cause serious environmental disasters worldwide. Although the major toxicity of MCLR has been ascribed to its potent ability to inhibit protein phosphatase 1 and protein phosphatase 2A (PP2A), recent studies have suggested that MCLR may also perturb other important cellular processes, such as gener...

متن کامل

Involvement of the fractalkine pathway in the pathogenesis of childhood hemolytic uremic syndrome.

Thrombotic microangiopathy and acute renal failure are cardinal features of postdiarrheal hemolytic uremic syndrome (HUS). These conditions are related to endothelial and epithelial cell damage induced by Shiga toxin (Stx) through the interaction with its globotriaosyl ceramide receptor. However, inflammatory processes contribute to the pathogenesis of HUS by sensitizing cells to Stx fractalkin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of cell science

دوره 117 Pt 17  شماره 

صفحات  -

تاریخ انتشار 2004