Proteome response of Elymus elongatum to severe water stress and recovery.

نویسندگان

  • Ali Gazanchian
  • Mohsen Hajheidari
  • Nayer Khoshkholgh Sima
  • Ghasem Hosseini Salekdeh
چکیده

Tall wheatgrass (Elymus elongatum Host) is a drought-tolerant, cool-season forage grass native to Iran. A proteomic approach has been applied to identify mechanisms of drought responsiveness and tolerance in plants undergoing vegetative stage drought stress and then recovery after rewatering. Uniformed clones were reproduced from a parent plant collected from Brojen (central region of Iran). Clones were grown in pots and drought was initiated by withholding water for 16 d. The leaf samples were taken in triplicate from both stressed/rewatered plants and continuously watered controls at five times: (i) 75% FC, (ii) 50% FC, (iii) 25% FC, (iv) 3 d after rewatering, and (v) 14 d after rewatering. Changes in the proteome pattern of shoots were studied using two-dimensional gel electrophoresis. Following the 16 d water stress, both shoot dry weight and leaf width decreased up to 67% compared with the well-watered plants, whereas proline content increased up to 20-fold. Leaf relative water contents (RWC) also declined from 85% to 24%. Out of about 600 protein spots detected on any given two-dimensional gel, 58 protein spots were reproducibly and significantly changed during drought stress and recovery. Only one protein (abscisic acid- and stress-inducible protein) showed significant changes in expression and position in response to severe drought. The fifty-eight responsive proteins were categorized in six clusters including two groups of proteins specifically up- and down-regulated in response to severe drought stress. Eighteen proteins belonging to these two groups were analysed by liquid chromatography tandem mass spectrometry leading to the identification of 11 of them, including the oxygen-evolving enhancer protein 2, abscisic acid- and stress-inducible protein, several oxidative stress tolerance enzymes, two small heat shock proteins, and Rubisco breakdown. The results suggest that E. elongatum may tolerate severe drought stress by accumulating proline and several proteins related to drought-stress tolerance. Recovery after rewatering might be another mechanism by which plants tolerate erratic rainfall in semi-arid regions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Analysis of the Thinopyrum elongatum Transcriptome under Water Deficit Stress

The transcriptome of Thinopyrum elongatum under water deficit stress was analyzed using RNA-Seq technology. The results showed that genes involved in processes of amplification of stress signaling, reductions in oxidative damage, creation of protectants, and roots development were expressed differently, which played an important role in the response to water deficit. The Th. elongatum transcrip...

متن کامل

Effect of Water Stress on Seed Germination of Agropyron Elongatum, Agropyron Desertourm & Secale Montanum

Physiological effect of six levels of water stress (0, -0.1, -.03, -0.6, -0.9 and -1.2 MP) was studied on seed germination and plumule as well as radicule growth length in three species namely: Agropyron elongatum, Agropyron desertourm and Secale montanum. Polyethylene glycol (PEG) was used to provide appropriate water potentials. A total of 100 seeds in four replications (Petri dishes) were so...

متن کامل

Physiological and morphological responses of rice (Oryza sativa L.) to varying water stress management strategies

Sustainability of rice production under limited water conditions is threatened by increasing irrigation water scarcity. Therefore, physiological and morphological responses of rice to varying water stress management strategies should be determined. The physiological and morphological responses of a semi dwarf rice (Hashemi cultivar) to water stress intensities (mild and severe, i.e., short-dura...

متن کامل

Evaluation of Leaf Proteome in Wheat Genotypes Under Drought Stress

Drought stress in plants, the change (increase or decrease) in the production of plant proteins. Proteomics in recent years one of the most powerful tools that help us to study the changes in protein In order to investigate the proteome of wheat leaves in response to terminal drought, two genotypes susceptible and resistant wheat genotypes were evaluated under irrigated (non-stress) and rain-fe...

متن کامل

Evaluation of Leaf Proteome in Wheat Genotypes Under Drought Stress

Drought stress in plants, the change (increase or decrease) in the production of plant proteins. Proteomics in recent years one of the most powerful tools that help us to study the changes in protein In order to investigate the proteome of wheat leaves in response to terminal drought, two genotypes susceptible and resistant wheat genotypes were evaluated under irrigated (non-stress) and rain-fe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of experimental botany

دوره 58 2  شماره 

صفحات  -

تاریخ انتشار 2007