Endogenous DNA replication stress results in expansion of dNTP pools and a mutator phenotype.
نویسندگان
چکیده
The integrity of the genome depends on diverse pathways that regulate DNA metabolism. Defects in these pathways result in genome instability, a hallmark of cancer. Deletion of ELG1 in budding yeast, when combined with hypomorphic alleles of PCNA results in spontaneous DNA damage during S phase that elicits upregulation of ribonucleotide reductase (RNR) activity. Increased RNR activity leads to a dramatic expansion of deoxyribonucleotide (dNTP) pools in G1 that allows cells to synthesize significant fractions of the genome in the presence of hydroxyurea in the subsequent S phase. Consistent with the recognized correlation between dNTP levels and spontaneous mutation, compromising ELG1 and PCNA results in a significant increase in mutation rates. Deletion of distinct genome stability genes RAD54, RAD55, and TSA1 also results in increased dNTP levels and mutagenesis, suggesting that this is a general phenomenon. Together, our data point to a vicious circle in which mutations in gatekeeper genes give rise to genomic instability during S phase, inducing expansion of the dNTP pool, which in turn results in high levels of spontaneous mutagenesis.
منابع مشابه
Pools and Pols: Mechanism of a mutator phenotype.
The maintenance of the human genome is dependent upon several cellular processes including DNA replication. Ordinarily, DNA replication is an exceptionally faithful process, with approximately one error occurring for every 10–10 nucleotides (1, 2). High-fidelity replicative DNA polymerases with exonucleolytic proofreading activity, along with DNA mismatch repair machinery, are responsible for a...
متن کاملdNTP pool levels modulate mutator phenotypes of error-prone DNA polymerase ε variants.
Mutator phenotypes create genetic diversity that fuels tumor evolution. DNA polymerase (Pol) ε mediates leading strand DNA replication. Proofreading defects in this enzyme drive a number of human malignancies. Here, using budding yeast, we show that mutator variants of Pol ε depend on damage uninducible (Dun)1, an S-phase checkpoint kinase that maintains dNTP levels during a normal cell cycle a...
متن کاملSpd 1 accumulation causes genome instability independently of ribonucleotide reduction but functions to protect the genome when deoxynucleotide pools are elevated
Cullin4, Ddb1, and Cdt2 are core subunits of the ubiquitin ligase complex CRL4 Cdt2 , which controls genome stability by targeting Spd1 for degradation during DNA replication and repair in fission yeast. Spd1 has an inhibitory effect on ribonucleotide reductase (RNR), the activity of which is required for deoxynucleotide (dNTP) synthesis. Failure to degrade Spd1 in CRL4 Cdt2 defective mutants l...
متن کاملColon cancer-associated mutator DNA polymerase δ variant causes expansion of dNTP pools increasing its own infidelity.
Defects in DNA polymerases δ (Polδ) and ε (Polε) cause hereditary colorectal cancer and have been implicated in the etiology of some sporadic colorectal and endometrial tumors. We previously reported that the yeast pol3-R696W allele mimicking a human cancer-associated variant, POLD1-R689W, causes a catastrophic increase in spontaneous mutagenesis. Here, we describe the mechanism of this extraor...
متن کاملMutational consequences of dNTP pool imbalances in E. coli.
The accuracy of DNA synthesis depends on the accuracy of the polymerase as well as the quality and concentration(s) of the available 5'-deoxynucleoside-triphosphate DNA precursors (dNTPs). The relationships between dNTPs and error rates have been studied in vitro, but only limited insights exist into these correlations during in vivo replication. We have investigated this issue in the bacterium...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The EMBO journal
دوره 31 4 شماره
صفحات -
تاریخ انتشار 2012