Matrix Variate ^-generalized Normal Distribution
نویسنده
چکیده
In this paper, the matrix variate ^-generalized normal distribution is introduced. Then its properties are studied. In particular, it is proved that this distribution has maximal entropy in a certain class of distributions.
منابع مشابه
On Conditional Applications of Matrix Variate Normal Distribution
In this paper, by conditioning on the matrix variate normal distribution (MVND) the construction of the matrix t-type family is considered, thus providing a new perspective of this family. Some important statistical characteristics are given. The presented t-type family is an extension to the work of Dickey [8]. A Bayes estimator for the column covariance matrix &Sigma of MVND is derived under ...
متن کاملSymmetrised Doubly Non Central, Nonsingular Matrix Variate Beta Distribution
In this paper, we determine the symmetrised density of a nonsingular doubly noncentral matrix variate beta type I and II distributions under different definitions.
متن کاملON SELBERG-TYPE SQUARE MATRICES INTEGRALS
In this paper we consider Selberg-type square matrices integrals with focus on Kummer-beta types I & II integrals. For generality of the results for real normed division algebras, the generalized matrix variate Kummer-beta types I & II are defined under the abstract algebra. Then Selberg-type integrals are calculated under orthogonal transformations.
متن کاملMatrix-Variate Distribution of Training Models for Robust Speaker Adaptation
In this paper, we describe a new speaker adaptation method based on the matrix-variate distribution of training models. A set of mean vectors of hidden Markov models (HMMs) is assumed to be drawn from the matrix-variate normal distribution, and bases are derived under this assumption. The resulting bases have the same dimension as that of the eigenvoice, thus adaptation can be performed using t...
متن کاملClassifying three-way data through Matrix-Normal Mixtures
Matrix-variate distributions represent a natural way for modeling random matrices. Realizations from random matrices are generated by the simultaneous observation of variables in different situations or locations, and are commonly arranged in three-way data structures. Among the matrix-variate distributions, the matrix normal density plays the same pivotal role as the multivariate normal distri...
متن کامل